Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.4 MB)

Title: Linking aboveground net primary productivity to soil carbon and dissolved organic carbon in complex terrain

Author: Peterson, F.S.; Lajtha, K.;

Date: 2013

Source: Journal of Geophysical Research: Biogeosciences

Publication Series: Scientific Journal (JRNL)

Description: Factors influencing soil organic matter (SOM) stabilization and dissolved organic carbon (DOC) content in complex terrain, where vegetation, climate, and topography vary over the scale of a few meters, are not well understood. We examined the spatial correlations of lidar and geographic information system-derived landscape topography, empirically measured soil characteristics, and current and historical vegetation composition and structure versus SOM fractions and DOC pools and leaching on a small catchment (WS1) in the H.J. Andrews Experimental Forest, located in the western Cascades Range of Oregon, USA. We predicted that aboveground net primary productivity (ANPP), litter fall, and nitrogen mineralization would be positively correlated with SOM, DOC, and carbon (C) content of the soil based on the principle that increased C inputs cause C stores in and losses from in the soil. We expected that in tandem, certain microtopographical and microclimatic characteristics might be associated with elevated C inputs and correspondingly, soil C stores and losses.We confirmed that on this site, positive relationships exist between ANPP, C inputs (litter fall), and losses (exportable DOC), but we did not find that these relationships between ANPP, inputs, and exports were translated to SOM stores (mg C/g soil), C content of the soil (% C/g soil), or DOC pools (determined with salt and water extractions). We suggest that the biogeochemical processes controlling C storage and lability in soil may relate to longer-term variability in aboveground inputs that result from a heterogeneous and evolving forest stand.

Keywords: soil carbon, SOM, soil organic matter, DOC, dissolved organic carbon

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



Peterson, F.S.; Lajtha, K. 2013. Linking aboveground net primary productivity to soil carbon and dissolved organic carbon in complex terrain. Journal of Geophysical Research: Biogeosciences. 118(3): 1225-1236.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.