Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (799 KB)

Title: Element uptake, accumulation, and resorption in leaves of mangrove species with different mechanisms of salt regulation

Author: Medina, E.; Fernandez, W.; Barboza, F.;

Date: 2015

Source: Web Ecology. 15(1): 3-13.

Publication Series: Scientific Journal (JRNL)

Description: Element uptake from substrate and resorption capacity of nutrients before leaf shedding are frequently species-specific and difficult to determine in natural settings. We sampled populations of Rhizophora mangle (salt-excluding species) and Laguncularia racemosa (salt-secreting species) in a coastal lagoon in the upper section of the Maracaibo strait in western Venezuela to estimate accumulation and resorption of mineral elements. Leaves collected fortnightly during 4 months within the rainy season were stratified as young, adult, old, and senescent. We measured changes in concentration of essential elements (N, P, S, K, Mg, Ca, Mn, Fe) and Na (elemental analyzer and plasma spectrometer), leaf succulence (water/area), and specific leaf area (area/mass) and calculated relative resorption or accumulation of elements in senescent leaves before abscission. Succulence was similar in young leaves of both species and increased with age, more abruptly in L. racemosa. Concentrations of N, K, and Mg were higher in R. mangle, whereas those of P, Na, Ca, and S were higher in L. racemosa. Concentration of K per unit leaf water decreased with age in both species; however, Na concentration in R. mangle remained at a similar level until increasing markedly in senescent leaves, whereas in L. racemosa it increased throughout the leaf lifespan. Relative changes based on leaf mass, leaf area, or whole leaf did not differ statistically. On a leaf mass basis both species showed resorption of C, N, P, and K and accumulation of S, Na, Mg, Ca, Mn, and Fe. However, R. mangle was more efficient restricting Na and S uptake, resorbing P, and accumulating Fe than L. racemosa. The P =N resorption ratio is > 1 in R. mangle and < 1 in L. racemosa. We conclude that those differences are related to higher root permeability to Na and S salts in the salt-secreting species and to higher P requirements of R. mangle compared to L. racemosa. Our results give a comprehensive picture of nutrient dynamics in the foliage of mangrove species with contrasting mechanisms of salt regulation.

Keywords: mangroves, nutrient dynamics, salinity, salt regulation

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Medina, E.; Fernandez, W.; Barboza, F. 2015. Element uptake, accumulation, and resorption in leaves of mangrove species with different mechanisms of salt regulation. Web Ecology. 15(1): 3-13.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.