Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (3.5 MB)

Title: Machine learning and hurdle models for improving regional predictions of stream water acid neutralizing capacity

Author: Povak, Nicholas A.; Hessburg, Paul F.; Reynolds, Keith M.; Sullivan, Timothy J.; McDonnell, Todd C.; Salter, R. Brion;

Date: 2013

Source: Water Resources Research. 49(6): 3531-3546.

Publication Series: Scientific Journal (JRNL)

Description: In many industrialized regions of the world, atmospherically deposited sulfur derived from industrial, nonpoint air pollution sources reduces stream water quality and results in acidic conditions that threaten aquatic resources. Accurate maps of predicted stream water acidity are an essential aid to managers who must identify acid-sensitive streams, potentially affected biota, and create resource protection strategies. In this study, we developed correlative models to predict the acid neutralizing capacity (ANC) of streams across the southern Appalachian Mountain region, USA. Models were developed using stream water chemistry data from 933 sampled locations and continuous maps of pertinent environmental and climatic predictors. Environmental predictors were averaged across the upslope contributing area for each sampled stream location and submitted to both statistical and machine-learning regression models. Predictor variables represented key aspects of the contributing geology, soils, climate, topography, and acidic deposition. To reduce model error rates, we employed hurdle modeling to screen out well-buffered sites and predict continuous ANC for the remainder of the stream network. Models predicted acid-sensitive streams in forested watersheds with small contributing areas, siliceous lithologies, cool and moist environments, low clay content soils, and moderate or higher dry sulfur deposition. Our results confirmed findings from other studies and further identified several influential climatic variables and variable interactions. Model predictions indicated that one quarter of the total stream network was sensitive to additional sulfur inputs (i.e., ANC<100 meq L-1), while <10% displayed much lower ANC (<50 meq L-1). These methods may be readily adapted in other regions to assess stream water quality and potential biotic sensitivity to acidic inputs.

Keywords: Acid neutralizing capacity, ANC, niche model, stream water acidification, imbalanced data, sulfur, acidic deposition

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Povak, Nicholas A.; Hessburg, Paul F.; Reynolds, Keith M.; Sullivan, Timothy J.; McDonnell, Todd C.; Salter, R. Brion. 2013. Machine learning and hurdle models for improving regional predictions of stream water acid neutralizing capacity. Water Resources Research. 49(6): 3531-3546.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.