Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (0 bytes)

Title: Abundance of volatile organic compounds in white ash phloem and emerald ash borer larval frass does not attract Tetrastichus planipennisi in a Y-tube olfactometer

Author: Chen, Yigen; Ulyshen, Michael D.; Poland, Therese M.;

Date: 2015

Source: Insect Science

Publication Series: Scientific Journal (JRNL)

Description: Many natural enemies employ plant- and/or herbivore-derived signals for host/prey location. The larval parasitoid Tetrastichus planipennisi Yang (Hymenoptera: Eulophidae) is 1 of 3 biocontrol agents currently being released in an effort to control the emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coloeptera: Burprestidae) in NorthAmerica. To enhance its efficiency, allelochemicals that attract it need to be assessed. In this study, ash phloem volatile organic compounds (VOCs) of black, green, and white ash, and EAB larval frass were compared. Foraging behavior of T. planipennisi females in response to VOCs of white ash or frass from EAB larvae feeding on white ash phloem was tested using a Y-tube olfactometer. Results indicated that the 3 ash species had similar VOC profiles. EAB larval frass generally contained greater levels of VOCs than phloem. Factor analysis indicated that the 11 VOCs could be broadly divided into 2 groups, with á-bisabolol, â-caryophyllene, (E)-2-hexenal, (Z)-3-hexenal, limonene, methyl benzoate, methyl indole-3-acetic acid, methyl jasmonate, methyl salicylate as the first group and the rest (i.e., methyl linoleate and methyl linolenate) as a second. Abundance of VOCs in white ash phloem tissue and frass, nevertheless, did not attract T. planipennisi females. The concealed feeding of EAB larvae might explain the selection for detectable and reliable virbrational signals, instead of undetectable and relatively unreliable VOC cues from phloem and frass, in short-range foraging by T. planipennisi. Alternatively, it is possible that T. planipennisi is not amenable to the Y-tube olfactometer assay employed.

Keywords: Agrilus planipennis, biological control, Fraxinus, invasive species, semiochemical

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Chen, Yigen; Ulyshen, Michael D.; Poland, Therese M. 2015. Abundance of volatile organic compounds in white ash phloem and emerald ash borer larval frass does not attract Tetrastichus planipennisi in a Y-tube olfactometer . Insect Science. 23(5): 712-719.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.