Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (919 KB)

Title: Mapping aboveground carbon stocks using LiDAR data in Eucalyptus spp. plantations in the state of Sao Paulo, Brazil

Author: Silva, Carlos Alberto; Klauberg, Carine; Carvalho, Samuel de Padua Chaves e; Hudak, Andrew T.; Rodriguez, e Luiz Carlos Estraviz.;

Date: 2014

Source: Scientia Forestalis. 42(104): 591-604.

Publication Series: Scientific Journal (JRNL)

Description: Fast growing plantation forests provide a low-cost means to sequester carbon for greenhouse gas abatement. The aim of this study was to evaluate airborne LiDAR (Light Detection And Ranging) to predict aboveground carbon (AGC) stocks in Eucalyptus spp. plantations. Biometric parameters (tree height (Ht) and diameter at breast height (DBH)) were collected from conventional forest inventory sample plots. Regression models predicting total aboveground carbon (AGCt), aboveground carbon in commercial logs (AGCc), and aboveground carbon in harvest residuals (AGCr) from LiDAR-derived canopy structure metrics were developed and evaluated for predictive power and parsimony. The best models from a family of six models were selected based on corrected Akaike Information Criterion (AICc) and assessed by the root mean square error (RMSE) and coefficient of determination (R²-adj). The best three models to estimate AGC stocks were AGCt: R²-adj = 0.81, RMSE = 7.70 Mg.ha-1; AGCc: R²-adj = 0.83, RMSE = 5.26 Mg.ha-1; AGCr: R²-adj = 0.71, RMSE = 2.67 Mg.ha-1. This study showed that LiDAR canopy structure metrics can be used to predict AGC stocks in Eucalyptus spp. plantations in Brazil with high accuracy. We conclude that there is good potential to monitor growth and carbon sequestration in Eucalyptus spp. plantations using LiDAR.

Keywords: Airborne Laser Scanning ALS, LiDAR metrics, C stock, fast growing plantation

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Silva, Carlos Alberto; Klauberg, Carine; Carvalho, Samuel de Padua Chaves e; Hudak, Andrew T.; Rodriguez, e Luiz Carlos Estraviz. 2014. Mapping aboveground carbon stocks using LiDAR data in Eucalyptus spp. plantations in the state of Sao Paulo, Brazil. Scientia Forestalis. 42(104): 591-604.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.