Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.9 MB)

Title: Variation in foliar respiration and wood CO2 efflux rates among species and canopy layers in a wet tropical forest

Author: Asao, Shinichi; Bedoya-Arrieta, Ricardo; Ryan, Michael G.;

Date: 2014

Source: Tree Physiology. 35: 148-159.

Publication Series: Scientific Journal (JRNL)

Description: As tropical forests respond to environmental change, autotrophic respiration may consume a greater proportion of carbon fixed in photosynthesis at the expense of growth, potentially turning the forests into a carbon source. Predicting such a response requires that we measure and place autotrophic respiration in a complete carbon budget, but extrapolating measurements of autotrophic respiration from chambers to ecosystem remains a challenge. High plant species diversity and complex canopy structure may cause respiration rates to vary and measurements that do not account for this complexity may introduce bias in extrapolation more detrimental than uncertainty. Using experimental plantations of four native tree species with two canopy layers, we examined whether species and canopy layers vary in foliar respiration and wood CO2 efflux and whether the variation relates to commonly used scalars of mass, nitrogen (N), photosynthetic capacity and wood size. Foliar respiration rate varied threefold between canopy layers, ∼0.74 μmol m-2 s-1 in the overstory and ∼0.25 μmol m-2 s-1 in the understory, but little among species. Leaf mass per area, N and photosynthetic capacity explained some of the variation, but height explained more. Chamber measurements of foliar respiration thus can be extrapolated to the canopy with rates and leaf area specific to each canopy layer or height class. If area-based rates are sampled across canopy layers, the area-based rate may be regressed against leaf mass per area to derive the slope (per mass rate) to extrapolate to the canopy using the total leaf mass. Wood CO2 efflux varied 1.0–1.6 μmol m-2 s-1 for overstory trees and 0.6-0.9 μmol m-2 s-1 for understory species. The variation in wood CO2 efflux rate was mostly related to wood size, and little to species, canopy layer or height. Mean wood CO2 efflux rate per surface area, derived by regressing CO2 efflux per mass against the ratio of surface area to mass, can be extrapolated to the stand using total wood surface area. The temperature response of foliar respiration was similar for three of the four species, and wood CO2 efflux was similar between wet and dry seasons. For these species and this forest, vertical sampling may yield more accurate estimates than would temporal sampling.

Keywords: autotrophic respiration, carbon fluxes and pools, ecophysiology, leaf dry mass per area, photosynthesis, rainforest, vertical gradient

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Asao, Shinichi; Bedoya-Arrieta, Ricardo; Ryan, Michael G. 2014. Variation in foliar respiration and wood CO2 efflux rates among species and canopy layers in a wet tropical forest. Tree Physiology. 35: 148-159.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.