Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.0 MB)

Title: Investigating the links between ozone and organic aerosol chemistry in a biomass burning plume from a prescribed fire in California chaparral

Author: Alvarado, M.J.; Lonsdale, C.R.; Yokelson, R.J.; Akagi, S.K.; Burling, I.R.; Coe, H.; Craven, J.S.; Fischer, E.; McMeeking, G.R.; Seinfeld, J.H.; Soni, T.; Taylor, J.W.; Weise, D.R.; Wold, C.E.;

Date: 2015

Source: Atmospheric Chemistry and Physics. 15: 6667-6688

Publication Series: Scientific Journal (JRNL)

Description: Within minutes after emission, complex photochemistry in biomass burning smoke plumes can cause large changes in the concentrations of ozone (O3) and organic aerosol (OA). Being able to understand and simulate this rapid chemical evolution under a wide variety of conditions is a critical part of forecasting the impact of these fires on air quality, atmospheric composition, and climate. Here we use version 2.1 of the Aerosol Simulation Program (ASP) to simulate the evolution of O3 and secondary organic aerosol (SOA) within a young biomass burning smoke plume from the Williams prescribed fire in chaparral, which was sampled over California in November 2009. We demonstrate the use of a method for simultaneously accounting for the impact of the unidentified intermediate volatility, semi-volatile, and extremely low volatility organic compounds (here collectively called "SVOCs") on the formation of OA (using the Volatility Basis Set – VBS) and O3 (using the concept of mechanistic reactivity). We show that this method can successfully simulate the observations of O3, OA, NOx , ethylene (C2H4), and OH to within measurement uncertainty using reasonable assumptions about the average chemistry of the unidentified SVOCs. These assumptions were (1) a reaction rate constant with OH of ~ 10-11 cm3s-1; (2) a significant fraction (up to ~ 50%) of the RO2+NO reaction resulted in fragmentation, rather than functionalization, of the parent SVOC; (3) ~ 1.1 molecules of O3 were formed for every molecule of SVOC that reacted; (4) ~ 60% of the OH that reacted with the unidentified non-methane organic compounds (NMOC) was regenerated as HO2; and (5) that ~ 50% of the NO that reacted with the SVOC peroxy radicals was lost, presumably to organic nitrate formation. Additional evidence for the fragmentation pathway is provided by the observed rate of formation of acetic acid (CH3COOH), which is consistent with our assumed fragmentation rate. However, the model overestimates peroxyacetyl nitrate (PAN) formation downwind by about 50%, suggesting the need for further refinements to the chemistry. This method could provide a way for classifying different smoke plume observations in terms of the average chemistry of their SVOCs, and could be used to study how the chemistry of these compounds (and the O3 and OA they form) varies between plumes.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Evangeliou, Nikolaos; Balkanski, Yves; Cozic, Anne; Hao, Wei Min; Moller, Anders Pape. 2014. Wildfires in Chernobyl-contaiminated forests and risks to the population and the environment: A new nuclear disaster about to happen? Environment International. 73: 346-358.http://www.treesearch.fs.fed.us/pubs/47004

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.