Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.4 MB)

Title: Fertilization intensifies drought stress: water use and stomatal conductance of Pinus taeda in a midrotation fertilization and throughfall reduction experiment

Author: Ward, Eric J.; Domec, Jean-Christophe; Laviner, Marshall A.; Fox, Thomas R.; Sun, Ge; McNulty, Steve; King, John; Noormets, Asko;

Date: 2015

Source: Forest Ecology and Management

Publication Series: Scientific Journal (JRNL)

Description: While mid-rotation fertilization increases productivity in many southern pine forests, it remains unclear what impact such management may have on stand water use. We examined the impact of nutrient and water availability on stem volume, leaf area, transpiration per unit ground area (EC) and canopy conductance per unit leaf area (GS) of a pine plantation during its 8th and 9th growing seasons. Treatments consisted of a factorial combination of throughfall reduction (30% reduction in throughfall versus ambient)and fertilization (a complete suite of essential nutrients) beginning in April 2012. Overall, our results indicate that despite unusually high rainfall in the study period and a lack of leaf area index (LAI) response, both EC and GS decreased in response to fertilization and throughfall reduction. Fertilization increased stem volume increment 21% in 2013. Treatment differences were greatest in the growing season of 2013, when EC was on average 19%, 13% and 29% lower in the throughfall reduction (D), fertilization (F) and combined treatment (FD) than the control (C), respectively. The responses of GS to volumetric soil water content (VWC) indicate that lower EC in F was associated with a decrease relative to C in GS at high VWC. Decreases of GS in D relative to C were associated with lower VWC, but little change in the response of GS to VWC. Decreases observed in FD resulted from a combination of these two factors. The pattern of GS responses in the different treatments suggests that structural or physiological changes underlie this fertilization response, possibly in fine root area or hydraulic conductivity. In the short term, this led to large increases in the water use efficiency of stem production, which could suggest greater resiliency to minor water stress. However, impacts on long-term sensitivity to drought remain a concern, as the EC reduction triggered by the fertilization treatment was of comparable magnitude to the 30% throughfall exclusion treatment and the greatest reductions were found in the combined treatment.

Keywords: Fertilization, Drought, Gas exchange, Loblolly pine, Sap flux, Transpiration

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Ward, Eric J.; Domec, Jean-Christophe; Laviner, Marshall A.; Fox, Thomas R.; Sun, Ge; McNulty, Steve; King, John; Noormets, Asko 2015. Fertilization intensifies drought stress: water use and stomatal conductance of Pinus taeda in a midrotation fertilization and throughfall reduction experiment. Forest Ecology and Management. 11 p. 10.1016/j.foreco.2015.04.009

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.