Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (876 KB)

Title: Integrating pixel- and polygon-based approaches to wildfire risk assessment: Application to a high-value watershed on the Pike and San Isabel National Forests, Colorado, USA

Author: Thompson, Matthew P.; Gilbertson-Day, Julie W.; Scott, Joe H.;

Date: 2015

Source: Environmental Modeling and Assessment. doi: 10.1007/s10666-015-9469-z

Publication Series: Scientific Journal (JRNL)

Description: We develop a novel risk assessment approach that integrates complementary, yet distinct, spatial modeling approaches currently used in wildfire risk assessment. Motivation for this work stems largely from limitations of existing stochastic wildfire simulation systems, which can generate pixel-based outputs of fire behavior as well as polygon-based outputs of simulated final fire perimeters, but due to storage and processing limitations do not retain spatially resolved information on intensity within a given fire perimeter. Our approach surmounts this limitation by merging pixel- and polygon-based modeling results to portray a fuller picture of potential wildfire impacts to highly valued resources and assets (HVRAs). The approach is premised on using fire perimeters to calculate fire-level impacts while explicitly capturing spatial variation of wildfire intensity and HVRA susceptibility within the perimeter. Relative to earlier work that generated statistical expectations of risk, this new approach can better account for the range of possible fire-level or season-level outcomes, providing far more comprehensive information on wildfire risk. To illustrate the utility of this new approach, we focus on a municipal watershed on the Pike and San Isabel National Forests in Colorado, USA.We demonstrate a variety of useful modeling outputs, including exceedance probability charts, conditional distributions of watershed area burned and watershed impacts, and transmission of risk to the watershed based on ignition location. These types of results can provide more information than is otherwise available using existing assessment frameworks, with significant implications for decision support in pre-fire planning, fuel treatment design, and wildfire incident response.

Keywords: burn probability, water quality, exceedance probability, expected net value change, wildfire hazard

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Thompson, Matthew P.; Gilbertson-Day, Julie W.; Scott, Joe H. 2015. Integrating pixel- and polygon-based approaches to wildfire risk assessment: Application to a high-value watershed on the Pike and San Isabel National Forests, Colorado, USA. Environmental Modeling and Assessment. doi: 10.1007/s10666-015-9469-z.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.