Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (3.7 MB)

Title: A conceptual precipitation-runoff modeling suite: Model selection, calibration and predictive uncertainty assessment

Author: Smith, Tyler Jon;

Date: 2008

Source: Bozeman, MT: Montana State University. 177 p. Thesis.

Publication Series: Theses

Description: In Montana and much of the Rocky Mountain West, the single most important parameter in forecasting the controls on regional water resources is snowpack. Despite the heightened importance of snowpack, few studies have considered the representation of uncertainty in coupled snowmelt/hydrologic conceptual models. Uncertainty estimation provides a direct interpretation of the risk associated with predictive modeling results. Bayesian inference, through the application of Markov chain Monte Carlo methods, provides a statistical means of approximating uncertainty associated with both the parameters and the model structure. This thesis addresses the complexities of predictive modeling in hydrology through the development, implementation and analysis of a suite of conceptual hydrologic models under a Bayesian inference framework. The research is presented in four main sections. First, a comparative assessment of three recently developed Markov chain Monte Carlo algorithms, based on their performance across two case studies, is performed. This study has revealed that the extreme complexity of the parameter space associated with simple, conceptual models is best explored by the Delayed Rejection Adaptive Metropolis algorithm. Second, a complete description of the models and study site incorporated in the study are presented, building on established theories of model development. Third, an investigation of the value of each model structure, considering predictive performance, uncertainty and physical realism is presented. This section builds on results of the first section, through the application of the Delayed Rejection Adaptive Metropolis algorithm for model calibration and uncertainty quantification under Bayesian principles. Finally, a discussion of the Simulation and Prediction Lab for Analysis of Snowmelt Hydrology, developed to incorporate the tasks of model selection, calibration and uncertainty analysis into a simple graphical user interface is explained. The application of a complete modeling framework from model selection to calibration and assessment presented in this thesis represents a holistic approach to the development of improved understanding of snow-dominated watersheds through prediction by coupled snowmelt/hydrologic modeling strategies.

Keywords: water resources, snowpack, modeling, assessment

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Smith, Tyler Jon. 2008. A conceptual precipitation-runoff modeling suite: Model selection, calibration and predictive uncertainty assessment. Bozeman, MT: Montana State University. 177 p. Thesis.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.