Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.8 MB)

Title: A watershed-scale assessment of a process soil CO2 production and efflux model

Author: Riveros-Iregui, Diego A.; McGlynn, Brian L.; Marshall, Lucy A.; Welsch, Daniel L.; Emanuel, Ryan E.; Epstein, Howard E.;

Date: 2011

Source: Water Resources Research. 47: W00J04.

Publication Series: Scientific Journal (JRNL)

Description: Growing season soil CO2 efflux is known to vary laterally by as much as seven fold within small subalpine watersheds (<5 km2), and such degree of variability has been strongly related to the landscape-imposed redistribution of soil water. Current empirical or process models offer low potential to simulate this variability or to simulate watershed-scale dynamics of soil CO2 efflux. We modified an existing process soil CO2 production and efflux model to include spatially variable soil moisture, and applied it to a well-studied and moderately complex watershed of the northern Rocky Mountains. We started at the point scale and progressively modeled processes up to the watershed scale. We corroborated model performance using an independent data set of soil CO2 efflux measurements from 53 sites distributed across the 393 ha watershed. Our approach (1) simulated the seasonality of soil CO2 efflux at riparian sites; (2) reproduced short-term (diel) dynamics of soil CO2 concentration ([CO2]) at riparian sites, particularly observed hysteresis patterns in the soil [CO2]–soil temperature relationship; and (3) simulated growing season estimates of soil CO2 efflux at dry sites across the landscape (98% of area). Model limitations included poor simulation of growing season (cumulative) soil CO2 efflux at sites with a large drainage area, likely as a result of poorly modeled soil water content and challenges in parametrization of root and microbial activities. Our study provides important insight into coupling hydrological and biogeochemical models at landscape scales, and highlights the role of landscape structure and heterogeneity when modeling spatial variability of biogeochemical processes.

Keywords: watershed, soil, biogeochemical processes, CO2 efflux

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Riveros-Iregui, Diego A.; McGlynn, Brian L.; Marshall, Lucy A.; Welsch, Daniel L.; Emanuel, Ryan E.; Epstein, Howard E. 2011. A watershed-scale assessment of a process soil CO2 production and efflux model. Water Resources Research. 47: W00J04.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.