Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.1 MB)

Title: Comparing large-scale hydrological model predictions with observed streamflow in the Pacific Northwest: effects of climate and groundwater

Author: Safeeq, Mohammad; Mauger, Guillaume S.; Grant, Gordon E.; Arismendi, Ivan; Hamlet, Alan F.; Lee, Se-Yeun;

Date: 2014

Source: Journal of Hydrometeorology. 15(6): 2501-2521.

Publication Series: Scientific Journal (JRNL)

Description: Assessing uncertainties in hydrologic models can improve accuracy in predicting future streamflow. Here, simulated streamflows using the Variable Infiltration Capacity (VIC) model at coarse (1/16°) and fine (1/120°) spatial resolutions were evaluated against observed streamflows from 217 watersheds. In particular, the adequacy of VIC simulations in groundwater- versus runoff-dominated watersheds using a range of flow metrics relevant for water supply and aquatic habitat was examined. These flow metrics were 1) total annual streamflow; 2) total fall, winter, spring, and summer season streamflows; and 3) 5th, 25th, 50th, 75th, and 95th flow percentiles. The effect of climate on model performance was also evaluated by comparing the observed and simulated streamflow sensitivities to temperature and precipitation. Model performance was evaluated using four quantitative statistics: nonparametric rank correlation p, normalized Nash–Sutcliffe efficiency NNSE, root-mean-square error RMSE, and percent bias PBIAS. The VIC model captured the sensitivity of streamflow for temperature better than for precipitation and was in poor agreement with the corresponding temperature and precipitation sensitivities derived from observed streamflow. The model was able to capture the hydrologic behavior of the study watersheds with reasonable accuracy. Both total streamflow and flow percentiles, however, are subject to strong systematic model bias. For example, summer streamflows were underpredicted (PBIAS = -13%) in groundwater-dominated watersheds and overpredicted (PBIAS = 48%) in runoff-dominated watersheds. Similarly, the 5th flow percentile was underpredicted (PBIAS = -51%) in groundwater-dominated watersheds and overpredicted (PBIAS = 19%) in runoff-dominated watersheds. These results provide a foundation for improving model parameterization and calibration in ungauged basins.

Keywords: hydrologic modeling, groundwater processes, streamflow, precipitation, temperature

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Safeeq, Mohammad; Mauger, Guillaume S.; Grant, Gordon E.; Arismendi, Ivan; Hamlet, Alan F.; Lee, Se-Yeun. 2014. Comparing large-scale hydrological model predictions with observed streamflow in the Pacific Northwest: effects of climate and groundwater. Journal of Hydrometeorology. 15(6): 2501-2521.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.