Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1,019 KB)

Title: Targeted sequencing of plant genomes

Author: Huynh, Mark D.;

Date: 2014

Source: Provo, UT: Brigham Young University. 59 p. Thesis.

Publication Series: Theses

Description: Next-generation sequencing (NGS) has revolutionized the field of genetics by providing a means for fast and relatively affordable sequencing. With the advancement of NGS, wholegenome sequencing (WGS) has become more commonplace. However, sequencing an entire genome is still not cost effective or even beneficial in all cases. In studies that do not require a whole-genome survey, WGS yields lower sequencing depth and sequencing of uninformative loci. Targeted sequencing utilizes the speed and low cost of NGS while providing deeper coverage for desired loci. This thesis applies targeted sequencing to the genomes of two different, non-model plants, Artemisia tridentate (sagebrush) and Lupinus luteus (yellow lupine). We first targeted the transcriptomes of three species of sagebrush (Artemisia) using RNA-seq. By targeting the transcriptome of sagebrush we have built a resource of transcripts previously unmatched in sagebrush and identify transcripts related to terpenes. Terpenes are of growing interest in sagebrush because of their ability to identify certain species of sagebrush and because they play a role in the feeding habits of the threatened sage-grouse. Lastly, using paralogs with synonymous mutations we reconstructed an evolutionary time line of ancient genome duplications. Second, we targeted the flanking loci of recognition sites of two endorestriction enzymes in genome of L. luteus genome through genotyping-by-sequencing (GBS). GBS of yellow lupine provided enough single-nucleotide polymorphic loci for the construction of a genetic map of yellow lupine. Additionally we compare GBS strategies for plant species without a reference genome sequence.

Keywords: genotyping-by-sequencing, lupine, plant genomes, sequencing, sagebrush, transcriptome, terpenes

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Huynh, Mark D. 2014. Targeted sequencing of plant genomes. Provo, UT: Brigham Young University. 59 p. Thesis.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.