Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (993 KB)

Title: Stable Low-Voltage Operation Top-Gate Organic Field-Effect Transistors on Cellulose Nanocrystal Substrates

Author: Wang, Cheng-Yin; Fuentes-Hernandez, Canek; Liu, Jen-Chieh; Dindar, Amir; Choi, Sangmoo; Youngblood, Jeffrey P.; Moon, Robert J.; Kippelen, Bernard;

Date: 2015

Source: ACS Applied Materials & Interfaces

Publication Series: Scientific Journal (JRNL)

Description: We report on the performance and the characterization of top-gate organic field-effect transistors (OFETs), comprising a bilayer gate dielectric of CYTOP/ Al2O3 and a solution-processed semiconductor layer made of a blend of TIPS-pentacene:PTAA, fabricated on recyclable cellulose nanocrystal−glycerol (CNC/glycerol) substrates. These OFETs exhibit low operating voltage, low threshold voltage, an average field-effect mobility of 0.11 cm2/(V s), and good shelf and operational stability in ambient conditions. To improve the operational stability in ambient a passivation layer of Al2O3 is grown by atomic layer deposition (ALD) directly onto the CNC/glycerol substrates. This layer protects the organic semiconductor layer from moisture and other chemicals that can either permeate through or diffuse out of the substrate.

Keywords: organic field-effect transistor, top-gate geometry, cellulose, low-voltage, ambient stability

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Wang, Cheng-Yin; Fuentes-Hernandez, Canek; Liu, Jen-Chieh; Dindar, Amir; Choi, Sangmoo; Youngblood, Jeffrey P.; Moon, Robert J.; Kippelen, Bernard 2015. Stable Low-Voltage Operation Top-Gate Organic Field-Effect Transistors on Cellulose Nanocrystal Substrates. ACS Applied Materials & Interfaces. 7(8): 4804-4808.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.