Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.8 MB)

Title: Large eddy simulation of forest canopy flow for wildland fire modeling

Author: Mueller, Eric; Mell, William; Simeoni, Albert;

Date: 2014

Source: Canadian Journal of Forest Research

Publication Series: Scientific Journal (JRNL)

Description: Large eddy simulation (LES) based computational fluid dynamics (CFD) simulators have obtained increasing attention in the wildland fire research community, as these tools allow the inclusion of important driving physics. However, due to the complexity of the models, individual aspects must be isolated and tested rigorously to ensure meaningful results. As wind is a driving force that can significantly dictate the behavior of a wildfire, the simulation of wind is studied in the context of a particular LES CFD model, the Wildland–urban interface Fire Dynamics Simulator (WFDS). As WFDS has yet to be tested extensively with regard to wind flow within and above forest canopies, a study of its ability to do so is carried out. First, three simulations are conducted using periodic boundary conditions. Two of these assume a spatially heterogeneous forest and one models wind downstream of a canopy edge. Second, two simulations are conducted with specified “inflow” conditions using two inflow profiles: one static and one dynamic (driven by a precursor simulation). Using periodic boundary conditions, the model is found to generate profiles of mean velocity and turbulent statistics that are representative of experimental measurements. The dynamic inflow scenario is found to perform better than the static case.

Keywords: computational fluid dynamics, large eddy simulation, wildland fire, canopy, wind

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



Mueller, Eric; Mell, William; Simeoni, Albert. 2014. Large eddy simulation of forest canopy flow for wildland fire modeling. Canadian Journal of Forest Research. 44(12): 1534-1544.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.