Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.3 MB)

Title: Epiphytic macrolichen indication of air quality and climate in interior forested mountains of the Pacific Northwest, USA

Author: Root, Heather T.; Geiser, Linda H.; Jovan, Sarah; Neitlich, Peter;

Date: 2015

Source: Ecological Indicators. 53: 95-105. 11 p.

Publication Series: Scientific Journal (JRNL)

Description: Biomonitoring can provide cost-effective and practical information about the distribution of nitrogen(N) deposition, particularly in regions with complex topography and sparse instrumented monitoring sites. Because of their unique biology, lichens are very sensitive bioindicators of air quality. Lichens lack acuticle to control absorption or leaching of nutrients and they dynamically concentrate nutrients roughly in proportion to the abundance in the atmosphere. As N deposition increases, nitrogen-loving eutrophiclichens become dominant over oligotrophic lichens that thrive in nutrient-poor habitats. We capitalize on these characteristics to develop two lichen-based indicators of air-borne and depositional N for interior forested mountain ecosystems of the Pacific Northwest and calibrate them with N concentration measured in PM2.5 at 12 IMPROVE air quality monitoring sites in the study area. The two lichen indices and peak frequencies of individual species exhibited continuous relationships with inorganic N pollution throughout the range of N in ambient PM2.5, suggesting that the designation of a critical level or critical load is somewhat arbitrary because at any level above background, some species are likely to experience adverse impacts. The concentration of N in PM2.5 near the city of Spokane, Washington was the lowest measured at an instrumented monitoring site near known N pollution sources. This level, 0.37 µg/m3/year, served as a critical level, corresponding to a concentration of 1.02% N in the lichen Letharia vulpine, which is similar to the upper end of background lichen N concentrations measured elsewhere in the western United States. Based on this level, we estimate critical loads to be 1.54 and 2.51 kg/ha/year of through-fall dissolved inorganic N deposition for lichen communities and lichen N concentration, respectively. We map estimated fine-particulate (PM2.5) N in ambient air based on lichen community and lichen N concentration indices to identify hotspots in the region. We also develop and map an independent lichen community-based bioclimatic index, which is strongly related to gradients in moisture availability and temperature variability. Lichen communities in the driest climates were more eutrophic than those in wetter climates at the same levels of N air pollution.

Keywords: air quality, bioindicators, climate change, critical level, lichen community, N deposition

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



Root, Heather T.; Geiser, Linda H.; Jovan, Sarah; Neitlich, Peter 2015. Epiphytic macrolichen indication of air quality and climate in interior forested mountains of the Pacific Northwest, USA. Ecological Indicators. 53: 95-105.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.