Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.4 MB)

Title: Prescribed burning and mastication effects on surface fuels in southern pine beetle-killed loblolly pine plantations

Author: Stottlemyer, Aaron D.; Waldrop, Thomas A.; Wang, G. Geoff;

Date: 2015

Source: Ecological Engineering 81: 514-524.

Publication Series: Scientific Journal (JRNL)

Description: Surface fuels were characterized in loblolly pine (Pinus taeda L.) plantations severely impacted by southern pine beetle (Dendroctonus frontalis Ehrh.) (SPB) outbreaks in the upper South Carolina Piedmont. Prescribed burning and mastication were then tested as fuel reduction treatments in these areas. Prescribed burning reduced fuelbed continuity by consuming litter (Oi layer), duff (Oe + Oa), and woody surface fuels (1-, 10-, and 100-h timelag size classes) immediately after the treatment. Total loading of 1- and 10-h fuels in burned stands (3.1 Mgha-1) remained significantly lower than that in the control (no treatment) (5.6 Mg ha-1) in the 2nd year post-treatment. However, 100- and 1000-h fuels increased post-burn due to accelerated failure of remaining pine snags and totaled 14.5 Mg ha-1 in the 2nd year post-treatment which was not significantly different than the control (17.3 Mg ha-1). Mineral soil exposure averaged 73% of burned stands after consumption of the duff layer in many areas. Custom low, moderate, and high load fuel models were developed for SPB-killed stands and produced simulated fire behavior (flame length and rate of spread) similar to two standard slash-blowdown fuel models (SB2 and SB3) when input to the BehavePlus fire modeling system. Mastication resulted in a compacted (bulk density = 131.3 kg m-3) and continuous layer of woody debris that averaged 15.1 cm in depth. Equations were developed for estimating masticated debris load and utilize fuelbed depth as input. The masticated debris load averaged 192.4 Mgha-1 in the 1st year post-treatment and was significantly higher than total fuel loading in burned (16.3 Mgha-1) and control (24.3 Mgha-1) stands. The treatments tested in this study provide different options for preparing SPB-killed areas for reforestation activities and may produce short-term reductions in fire hazard.

Keywords: Forest disturbance, site preparation, hazard reduction, fire behavior, masticated debris

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



Stottlemyer, Aaron D.; Waldrop, Thomas A.; Wang, G. Geoff. 2015. Prescribed burning and mastication effects on surface fuels in southern pine beetle-killed loblolly pine plantations. Ecological Engineering, 81: 514-524. 11 p.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.