Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (0 bytes)

Title: Genome-Wide Association Mapping of and Aspergillus flavus Aflatoxin Accumulation Resistance in Maize

Author: Warburton, Marilyn L.; Tang, Juliet D.; Windham, Gary L.; Hawkins, Leigh K.; Murray, Seth C.; Xu, Wenwei; Boykin, Debbie; Perkins, Andy; Williams, W. Paul;

Date: 2015

Source: Crop Science

Publication Series: Scientific Journal (JRNL)

Description: Contamination of maize (Zea mays L.) with aflatoxin, produced by the fungus Aspergillus flavus Link, has severe health and economic consequences. Efforts to reduce aflatoxin accumulation in maize have focused on identifying and selecting germplasm with natural host resistance factors, and several maize lines with significantly reduced aflatoxin accumulation have been identified. Past linkage mapping studies have identified quantitative trait loci (QTL) that consistently reduce aflatoxin levels in maize. In addition, an association mapping panel of 300 maize inbred lines was previously created specifically for the dissection of aflatoxin accumulation resistance. Here we report the results of a genome-wide association study (GWAS) using this panel of testcrossed maize hybrids. Each of the inbred parents of the testcrossed hybrids was genotyped by sequencing to generate 261,184 robust single nucleotide polymorphisms (SNPs), and the entire panel was phenotyped for aflatoxin accumulation following inoculation with A. flavus in multilocation, replicated field trials. Results uncovered 107 SNPs associated with aflatoxin accumulation in one or more environments in the association panel at a probability level between 9.78 × 10-6 and 2.87 × 10-10. Eight SNP trait associations were found with a false discovery rate (FDR) of less than 10% (p < 3.83 × 10-7). These SNPs occur within the sequence of three uncharacterized genes. Variants in 25 other genomic regions showing high association values over more than one environment are also presented. These genomic regions are undergoing validation studies and will be of use to dissect the resistance to aflatoxin accumulation and improve this trait.

Keywords: host plant resistance, aflatoxin, genome-wide association study

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Warburton, Marilyn L.; Tang, Juliet D.; Windham, Gary L.; Hawkins, Leigh K.; Murray, Seth C.; Xu, Wenwei; Boykin, Debbie; Perkins, Andy; Williams, W. Paul 2015. Genome-Wide Association Mapping of and Aspergillus flavus Aflatoxin Accumulation Resistance in Maize. Crop Science. 55(5): 11 p.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.