Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (785 KB)

Title: Big-leaf mahogany Swietenia macrophylla population dynamics and implications for sustainable management

Author: Grogan, James; Landis, R. Matthew; Free, Christopher M.; Schulze, Mark D.; Lentini, Marco; Ashton, Mark S.;

Date: 2014

Source: Journal of Applied Ecology. 51(3): 664-674

Publication Series: Scientific Journal (JRNL)

Description: Summary 1. The impacts of selective harvesting in tropical forests on population recovery and future timber yields by high-value species remain largely unknown for lack of demographic data spanning all phases of life history, from seed to senescence. In this study, we use an individual- based model parameterized using 15 years of annual census data to simulate population dynamics of big-leaf mahogany Swietenia macrophylla King in southeast Amazonia in response to multiple harvests and in the absence of harvesting. 2. The model is based on regression equations of stem diameter growth, mortality, and fruit production estimated as a function of stem diameter and prior growth; it includes functions for germinating seeds, growing trees from seedling to adult senescence, producing seeds, and creating disturbances at specified spatial scales and return intervals, including logging. We simulate six harvest scenarios by varying the minimum diameter cutting limit (60 cm, 80 cm) and the retention rate requirement (20%, 40% and 60% commercial population retained). 3. Without logging, simulated populations grew over 100 years by 182% from observed densities, indicating that one or more parameters in the model may overestimate long-term demographic rates on this landscape. However, 100-year densities did not far exceed values reported from forests across this region, and other modelled demographic parameters resembled observed behaviours. 4. Under current harvest regulations for mahogany in Brazil (60 cm minimum diameter cutting limit, 20% commercial-sized tree retention rate, minimum 5 commercial-sized trees 100 ha 1 retained after harvest, 30-year cutting cycle), commercial densities at the study site would decline from 397 to 113 trees 100 ha 1 before the fourth harvest in year 90, yielding an estimated 164% of the initial harvest volume during the fourth harvest. Increasing retention rates caused first-cut harvest volumes to decline but improved population recovery rates between harvests. Under both minimum diameter cutting limit scenarios, increasing retention rates led to more robust population recovery compared with the current 20% rate, and higher subsequent harvest yields relative to initial (first-cut) values. 5. Synthesis and applications. These results indicate that current harvest regulations in Brazil for mahogany and other high-value timber species with similar life histories will lead to commercial depletion after 2–3 cutting cycles. Increasing commercial-sized tree retention rates improved population recovery at the cost of reduced initial harvest volume yields. Sustainable harvests will require, in combination, a moderate increase in the retention rate, investment in artificial regeneration to boost population recovery, and implementation of silvicultural practices designed to increase growth rates by future crop trees.

Keywords: Amazon, Brazil, growth autocorrelation, growth modelling, individual-based model, sustainable forest management, tropical timber

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Grogan, James; Landis, R. Matthew; Free, Christopher M.; Schulze, Mark D.; Lentini, Marco; Ashton, Mark S. 2014. Big-leaf mahogany Swietenia macrophylla population dynamics and implications for sustainable management. Journal of Applied Ecology. 51(3): 664-674.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.