Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (490 KB)

Title: Alternate attractors in the population dynamics of a tree-killing bark beetle

Author: Martinson, Sharon J.; Ylioja, Tiina; Sullivan, Brian T.; Billings, Ronald F.; Ayres, Matthew P.;

Date: 2013

Source: Population Ecology 55: 95-106

Publication Series: Scientific Journal (JRNL)

Description: Among the most striking changes in ecosystems are those that happen abruptly and resist return to the original condition (i.e., regime shifts). This frequently involves conspicuous changes in the abundance of one species (e.g., an outbreaking pest or keystone species). Alternate attractors in population dynamics could explain switches between low and high levels of abundance, and could underlie some cases of regime shifts in ecosystems; this longstanding theoretical possibility has been difficult to test in nature. We compared the ability of an alternate attractors model versus two competing models to explain population fluctuations in the tree-killing bark beetle Dendroctonus frontalis. Frequency distributions of abundance were distinctly bimodal, a prediction of the alternate attractors model, strongly indicating the lack of a single, noisy equilibrium. Time series abundance data refuted the existence of strong delayed density-dependence or nonlinearities, as required by the endogenous cycles model. The model of alternate attractors was further supported by the existence of positive density-dependence at intermediate beetle abundances. Experimental manipulations show that interactions with competitors and shared enemies could create a locally stable equilibrium in small populations of D. frontalis. High variation among regions and years in the abundance of predators and competitors could permit switches between alternate states. Dendroctonus frontalis now provides the strongest case that we know of for alternate attractors in natural population dynamics. The accompanying demographic instability appears to underlie spatially extensive outbreaks that have lasting impacts on forest ecosystems. Understanding feedbacks in populations with alternate attractors can help to identify thresholds underlying regime shifts, and potentially manage them to avoid undesirable impacts.

Keywords: Alternate stable states, iDedroctonus fronatlis/i, Multiple equilibria, Pinus, Regime shift, Shared predators, Invasive species

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Martinson, Sharon J.; Ylioja, Tiina; Sullivan, Brian T.; Billings, Ronald F.; Ayres, Matthew P. 2013. Alternate attractors in the population dynamics of a tree-killing bark beetle. Population Ecology 55: 95-106. 12 p. 10.007/s10144-012-0357-y

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.