Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (389 KB)

Title: Factors affecting species distribution predictions: A simulation modeling experiment

Author: Reese, Gordon C.; Wilson, Kenneth R.; Hoeting, Jennifer A.; Flather, Curtis H.;

Date: 2005

Source: Ecological Applications. 15(2): 554-564.

Publication Series: Scientific Journal (JRNL)

Description: Geospatial species sample data (e.g., records with location information from natural history museums or annual surveys) are rarely collected optimally, yet are increasingly used for decisions concerning our biological heritage. Using computer simulations, we examined factors that could affect the performance of autologistic regression (ALR) models that predict species occurrence based on environmental variables and spatially correlated presence/absence data. We used a factorial experiment design to examine the effects of survey design, spatial contiguity, and species detection probability and applied the results of ten replications of each factorial combination to an ALR model. We used additional simulations to assess the effects of sample size and environmental data error on model performance. Predicted distribution maps were compared to simulated distribution maps, considered ‘‘truth,’’ and evaluated using several metrics: omission and commission error counts, residual sums of squares (RSS), and areas under receiver operating characteristic curves (AUC). Generally, model performance was better using random and stratified survey designs than when using other designs. Adaptive survey designs were an exception to this generalization under the omission error performance criterion. Surveys using rectangular quadrats, designed to emulate roadside surveys, resulted in models with better performance than those using square quadrats (using AUC, RSS, and omission error metrics) and were most similar in performance to a systematic quadrat design. Larger detection probabilities, larger sample sizes, contiguous distributions, and fewer environmental data errors generally improved model performance. Results suggest that spatially biased sample data, e.g., data collected along roads, could result in model performance near that of systematic quadrat designs even in the presence of potentially confounding factors such as contiguity of distributions, detection probability, sample size, and environmental data error.

Keywords: autologistic regression model, detection probability, environmental data error, habitat relationship modeling, prediction accuracy assessment, roadside survey, sample data, sample size, sampling bias, spatial contiguity, species range

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



Reese, Gordon C.; Wilson, Kenneth R.; Hoeting, Jennifer A.; Flather, Curtis H. 2005. Factors affecting species distribution predictions: A simulation modeling experiment. Ecological Applications. 15(2): 554-564.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.