Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (704 KB)

Title: Low-to-moderate nitrogen and phosphorus concentrations accelerate microbially driven litter breakdown rates

Author: Kominoski, John S.; Rosemond, Amy D.; Benstead, Jonathan P.; Gulis, Vladislav; Maerz, John C.; Manning, David W.P.;

Date: 2015

Source: Ecological Applications 25(3): 856-865

Publication Series: Scientific Journal (JRNL)

Description: Particulate organic matter (POM) processing is an important driver of aquatic ecosystem productivity that is sensitive to nutrient enrichment and drives ecosystem carbon (C) loss. Although studies of single concentrations of nitrogen (N) or phosphorus (P) have shown effects at relatively low concentrations, responses of litter breakdown rates along gradients of low-to-moderate N and P concentrations are needed to establish likely interdependent effects of dual N and P enrichment on baseline activity in stream ecosystems. We established 25 combinations of dissolved inorganic N (DIN; 55-545 ug/L) and soluble reactive P (SRP; 4-86 ug/L) concentrations with corresponding N:P molar ratios of 2-127 in experimental stream channels. We excluded macroinvertebrates, focusing on microbially driven breakdown of maple (Acer rubrum L.) and rhododendron (Rhododendron maximum L.) leaf litter. Breakdown rates, k, per day (d-1) and per degree-day (dd-1), increased by up to 6X for maple and 12X for rhododendron over our N and P enrichment gradient compared to rates at low ambient N and P concentrations. The best models of k (d-1 and dd-1) included litter species identity and N and P concentrations; there was evidence for both additive and interactive effects of N and P. Models explaining variation in k dd-1 were supported by N and P for both maple and rhododendron (R2 = 0.67 and 0.33, respectively). Residuals in the relationship between k dd-1 and N concentration were largely explained by P, but residuals for k dd-1 and P concentration were less adequately explained by N. Breakdown rates were more closely related to nutrient concentrations than variables associated with measurements of two mechanistic parameters associated with C loss (fungal biomass and microbial respiration rate). We also determined the effects of nutrient addition on litter C: nutrient stoichiometry and found reductions in litter C:N and C:P along our experimental nutrient gradient. Our results indicate that microbially driven litter processing rates increase across low-to-moderate nutrient gradients that are now common throughout human-modified landscapes.

Keywords: carbon processing, detritus, ecological stoichiometry, ecosystem function, litter breakdown, nutrient enrichment, organic matter quality, streams

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Kominoski, John S.; Rosemond, Amy D.; Benstead, Jonathan P.; Gulis, Vladislav; Maerz, John C.; Manning, David, W.P. 2015. Low-to-moderate nitrogen and phosphorus concentrations accelerate microbially driven litter breakdown rates. Ecological Applications. 25(3): 856-865. 10 p. http://dx.doi.org/10.1890/14-1113-1

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.