Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (3.9 MB)

Title: Naturally p-Hydroxybenzoylated Lignins in Palms

Author: Lu, Fachuang; Karlen, Steven D.; Regner, Matt; Kim, Hoon; Ralph, Sally A.; Sun, Run-Cang; Kuroda, Ken-ichi; Augustin, Mary Ann; Mawson, Raymond; Sabarez, Henry; Singh, Tanoj; Jimenez-Monteon, Gerardo; Zakaria, Sarani; Hill, Stefan; Harris, Philip J.; Boerjan, Wout; Wilkerson, Curtis G.; Mansfield, Shawn D.; Ralph, John;

Date: 2015

Source: BioEnergy Research

Publication Series: Scientific Journal (JRNL)

Description: The industrial production of palm oil concurrently generates a substantial amount of empty fruit bunch (EFB) fibers that could be used as a feedstock in a lignocellulose based biorefinery. Lignin byproducts generated by this process may offer opportunities for the isolation of value-added products, such as p-hydroxybenzoate (pBz), to help offset operating costs. Analysis of the EFB lignin by nuclear magnetic resonance (NMR) spectroscopy clearly revealed the presence of bound acetate and pBz, with saponification revealing that 1.1 wt% of the EFB was pBz; with a lignin content of 22.7 %, 4.8 % of the lignin is pBz that can be obtained as a pure component for use as a chemical feedstock. Analysis of EFB lignin by NMR and derivatization followed by reductive cleavage (DFRC) showed that pBz selectively acylates the γ-hydroxyl group of S units. This selectivity suggests that pBz, analogously with acetate in kenaf, p-coumarate in grasses, and ferulate in a transgenic poplar augmented with a feruloyl-CoAmonolignol transferase (FMT), is incorporated into the growing lignin chain via its γ-p-hydroxybenzoylated monolignol conjugate. Involvement of such conjugates in palm lignification is proven by the observation of novel phydroxybenzoylated non-resinol β–β-coupled units in the lignins. Together, the data implicate the existence of phydroxybenzoyl- CoA:monolignol transferases that are involved in lignification in the various willows (Salix spp.), poplars and aspen (Populus spp., family Salicaceae), and palms (family Arecaceae) that have p-hydroxybenzoylated lignins. Even without enhancing the levels by breeding or genetic engineering, current palm oil EFB ‘wastes’ should be able to generate a sizeable stream of p-hydroxybenzoic acid that offers opportunities for the development of value-added products derived from the oil palm industry.

Keywords: Lignin acylation, Transferase, NMR, DFRC method, Poplar, p-Hydroxybenzoic acid, Monolignol

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Lu, Fachuang; Karlen, Steven D.; Regner, Matt; Kim, Hoon; Ralph, Sally A.; Sun, Run-Cang; Kuroda, Ken-ichi; Augustin, Mary Ann; Mawson, Raymond; Sabarez, Henry; Singh, Tanoj; Jimenez-Monteon, Gerardo; Zakaria, Sarani; Hill, Stefan; Harris, Philip J.; Boerjan, Wout; Wilkerson, Curtis G.; Mansfield, Shawn D.; Ralph, John 2015. Naturally p-Hydroxybenzoylated Lignins in Palms. BioEnergy Research. 8(3): 934-952.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.