Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.1 MB)

Title: Seasonal carbohydrate dynamics and growth in Douglas-fir trees experiencing chronic, fungal-mediated reduction in functional leaf area

Author: Saffell, B. J.; Meinzer, F. C.; Woodruff, D. R.; Shaw, D. C.; Voelker, S. L.; Lachenbruch, B.; Falk, K.;

Date: 2014

Source: Tree Physiology. 34(3): 218-228.

Publication Series: Scientific Journal (JRNL)

Description: Stored non-structural carbohydrates (NSCs) could play an important role in tree survival in the face of a changing climate and associated stress-related mortality. We explored the effects of the stomata-blocking and defoliating fungal disease called Swiss needle cast on Douglas-fir carbohydrate reserves and growth to evaluate the extent to which NSCs can be mobilized under natural conditions of low water stress and restricted carbon supply in relation to potential demands for growth. We analyzed the concentrations of starch, sucrose, glucose and fructose in foliage, twig wood and trunk sapwood of 15 cooccurring Douglas-fir trees expressing a gradient of Swiss needle cast symptom severity quantified as previous-year functional foliage mass. Growth (mean basal area increment, BAI) decreased by ~80% and trunk NSC concentration decreased by 60% with decreasing functional foliage mass. The ratio of relative changes in NSC concentration and BAI, an index of the relative priority of storage versus growth, more than doubled with increasing disease severity. In contrast, twig and foliage NSC concentrations remained nearly constant with decreasing functional foliage mass. These results suggest that under disease-induced reductions in carbon supply, Douglas-fir trees retain NSCs (either actively or due to sequestration) at the expense of trunk radial growth. The crown retains the highest concentrations of NSC, presumably to maintain foliage growth and shoot extension in the spring, partially compensating for rapid foliage loss in the summer and fall.

Keywords: growth limitation, non-structural carbohydrates, Phaeocryptopus gaeumannii, Pseudotsuga menziesii, Swiss needle cast.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Saffell, B. J.; Meinzer, F. C.; Woodruff, D. R.; Shaw, D. C.; Voelker, S. L.; Lachenbruch, B.; Falk, K. 2014. Seasonal carbohydrate dynamics and growth in Douglas-fir trees experiencing chronic, fungal-mediated reduction in functional leaf area. Tree Physiology. 34(3): 218-228.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.