Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.7 MB)

Title: You are not always what we think you eat: selective assimilation across multiple whole-stream isotopic tracer studies

Author: Dodds, W. K.; Collins, S. M.; Hamilton, S. K.; Tank, J. L.; Johnson, S.; Webster, J. R.; Simon, K. S.; Whiles, M. R.; Rantala, H. M.; McDowell, W. H.; Peterson, S. D.; Riis, T.; Crenshaw, C. L.; Thomas, S. A.; Kristensen, P. B.; Cheever, B. M.; Flecker, A. S.; Griffiths, N. A.; Crowl, T.; Rosi-Marshall, E. J.; El-Sabaawi, R.; Martí, E.;

Date: 2014

Source: Ecology. 95(10): 2757-2767.

Publication Series: Scientific Journal (JRNL)

Description: Analyses of 21 15N stable isotope tracer experiments, designed to examine food web dynamics in streams around the world, indicated that the isotopic composition of food resources assimilated by primary consumers (mostly invertebrates) poorly reflected the presumed food sources. Modeling indicated that consumers assimilated only 33–50% of the N available in sampled food sources such as decomposing leaves, epilithon, and fine particulate detritus over feeding periods of weeks or more. Thus, common methods of sampling food sources consumed by animals in streams do not sufficiently reflect the pool of N they assimilate. Isotope tracer studies, combined with modeling and food separation techniques, can improve estimation of N pools in food sources that are assimilated by consumers. Food web studies that use putative food samples composed of actively cycling (more readily assimilable) and refractory (less assimilable) N fractions may draw erroneous conclusions about diets, N turnover, and trophic linkages of consumers. By extension, food web studies using stoichiometric or natural abundance approaches that rely on an accurate description of food-source composition could result in errors when an actively cycling pool that is only a fraction of the N pool in sampled food resources is not accounted for.

Keywords: 15N, consumer, food resources, food web, label mismatch, nitrogen cycling, stable isotope tracer addition.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Dodds, W.K.; Collins, S.M.; Hamilton, S.K.; Tank, J.L.; Johnson, S.; Webster, J.R.; Simon, K.S.; Whiles, M.R.; Rantala, H.M.; McDowell, W.H.; Peterson, S.D.; Riis, T.; Crenshaw, C.L.; Thomas, S.A.; Kristensen, P.B.; Cheever, B.M.; Flecker, A.S.; Griffiths, N.A.; Crowl, T.; Rosi-Marshall, E. J.; El-Sabaawi, R.; Martí, E. 2014. You are not always what we think you eat: selective assimilation across multiple whole-stream isotopic tracer studies. Ecology. 95(10): 2757-2767.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.