Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (797 KB)

Title: Testing predictions of forest succession using long-term measurements: 100 yrs of observations in the Oregon Cascades

Author: Harmon, Mark E.; Pabst, Robert J.;

Date: 2015

Source: Journal of Vegetation Science. 26(4): 722-732.

Publication Series: Scientific Journal (JRNL)

Description:

Question: Many predictions about forest succession have been based on chronosequences. Are these predictions – at the population, community and ecosystemlevel – consistent with long-termmeasurements in permanent plots? Location: Pseudotsuga menziesii (Mirb.) Franco dominated forest in western Oregon, US.

Methods: Over a 100-yr period, measurements every 5–10 yrs of the growth, mortality and regeneration of individually tagged trees in three 0.4-ha forest plots dominated by P. menziesii were used to test predictions derived from chronosequence studies.

Results: Population- and community-level predictions generally matched observations: the initial cohort of pioneer species declined exponentially, with the shorter-lived Prunus emarginata (Douglas ex Hook.) Eaton and Arbutus menziesii Pursh disappearing altogether, and long-lived species such as P. menziesii persisting; tree size distribution shifted from a log-normal to a normal distribution, although the establishment of mid- to late-seral species created a bimodal distribution that may represent a transitional phase not usually elaborated in prior work; and mortality shifted from largely density-dependent to increasing amounts of density-independent causes. The observed biomass composition of these forests, even after 154 yrs, was still largely dominated by P. menziesii, which was consistent with the prediction from chronosequence studies. The slowing of biomass accumulation as stands aged predicted from ecosystem theory was not consistent with the observation that live biomass accumulated at a relatively constant rate for the 100-yr period.

Conclusion: Predictions from chronosequences at the population and community level were consistent with long-term observations in permanent plots, whereas those at the ecosystem level were not. At the spatial scale (<2 ha) examined with these plots, the high heterogeneity of tree mortality may lead to a multi-modal pattern of net live biomass accumulation with long periods of constant gain interrupted by sudden losses of live biomass.

Keywords: In-growth, Live forest biomass, Mortality, Permanent plots, Successional theory, Time series

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Harmon, Mark E.; Pabst, Robert J. 2015. Testing predictions of forest succession using long-term measurements: 100 yrs of observations in the Oregon Cascades. Journal of Vegetation Science. 26(4): 722-732.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.