Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.3 MB)

Title: Measurement of semiochemical release rates with a dedicated environmental control system

Author: Zhu, Heping; Thistle, Harold W.; Ranger, Christopher M.; Zhou, Hongping; Strom, Brian L.;

Date: 2015

Source: Biosystems Engineering

Publication Series: Scientific Journal (JRNL)

Description: Insect semiochemical dispensers are commonly deployed under variable environmental conditions over a specified period. Predictions of their longevity are hampered by a lack of methods to accurately monitor and predict how primary variables affect semiochemical release rate. A system was constructed to precisely determine semiochemical release rates under environmentally-controlled conditions. Three dissimilar types of solid matrix, passive emission semiochemical dispensers (P339 Sirex, Beetleblock-MCH, W230 terpinolene) were selected to verify the system capabilities. The rate of mass loss for each semiochemical was measured inside a 0.11 m-3 air sealed reservoir. Each product was tested at five ambient temperatures and three values of relative humidity. Temperatures were maintained at their set points within ±1.0 °C and relative humidity within ±0.4%. Mass losses for the relatively large P339 Sirex dispensers were linear over the test period; losses for the smaller Beetleblock-MCH and W230 terpinolene dispensers fell sharply over the first 10 h of exposure and then fell linearly with exposure time. Test results demonstrated that release rates of the three semiochemicals at the linear fall stage increased exponentially as ambient temperature increased, and those rates were not apparently affected by relative humidity. Compared to release rates measured under field conditions, determination of semiochemical release rates was more precise and consistent with this dedicated, controlled environmental system. Semiochemical release rates measured with this system should provide a baseline for predicting performance and useful lifetime of semiochemical devices deployed for pest management in agriculture and forestry.

Keywords: Biological pesticide, Forest Pest control, Environmental chamber, Pheromone

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Zhu, Heping; Thistle, Harold W.; Ranger, Christopher M.; Zhou, Hongping; Strom, Brian L. 2015. Measurement of semiochemical release rates with a dedicated environmental control system. Biosystems Engineering. 129: 277-287. 11 p. http://dx.doi.org/10.1016/j.biosystemseng.2014.11.003

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.