Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.5 MB)

Title: An observational and modeling study of impacts of bark beetle-caused tree mortality on surface energy and hydrological cycles

Author: Chen, Fei; Zhang, Guo; Barlage, Michael; Zhang, Ying; Hicke, Jeffrey A.; Meddens, Arjan; Zhou, Guangsheng; Massman, William J.; Frank, John;

Date: 2015

Source: Journal of Hydrometeorology. 16: 744-761.

Publication Series: Scientific Journal (JRNL)

Description: Bark beetle outbreaks have killed billions of trees and affected millions of hectares of forest during recent decades. The objective of this study was to quantify responses of surface energy and hydrologic fluxes 2-3 yr following a spruce beetle outbreak using measurements and modeling. The authors used observations at the Rocky Mountains Glacier Lakes Ecosystem Experiments Site (GLEES), where beetles killed 85% of the basal area of spruce from 2005-07 (prebeetle) to 2009/10 (postbeetle). Observations showed increased albedo following tree mortality, more reflected solar radiation, and less net radiation, but these postoutbreak radiation changes are smaller than or comparable to their annual preoutbreak variability. The dominant signals from observations were a large reduction (27%) in summer daytime evaporation and a large increase (25%) in sensible heat fluxes. Numerous Noah LSM with multiparameterization options (Noah-MP) simulations incorporating beetle-caused tree mortality effects were conducted to assess their impact on the surface hydrological cycle components that were not directly observed. Model results revealed substantial seasonal variations: more spring snowmelt and runoff, less spring-summer transpiration, and drier soil in summer and fall. This modeled trend is similar to observed runoff changes in harvested forests where reduced forest density resulted in more spring snowmelt and annual water yields. Model results showed that snow albedo changes due to increased litter cover beneath killed trees altered the seasonal pattern of simulated snowmelt and snow water equivalent, but these changes are small compared to the effect of leaf loss. This study highlights the need to include the transient effects of forest disturbances in modeling land-atmosphere interactions and their potential impacts on regional weather and climate.

Keywords: bark beetle, surface energy, hydrological cycles, Glacier Lakes Ecosystem Experiments Site (GLEES), disturbance

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Chen, Fei; Zhang, Guo; Barlage, Michael; Zhang, Ying; Hicke, Jeffrey A.; Meddens, Arjan; Zhou, Guangsheng; Massman, William J.; Frank, John. 2015. An observational and modeling study of impacts of bark beetle-caused tree mortality on surface energy and hydrological cycles. Journal of Hydrometeorology. 16: 744-761.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.