Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1,005 KB)

Title: Temporal transferability of LiDAR-based imputation of forest structure attributes

Author: Fekety, Patrick A.; Falkowski, Michael J.; Hudak, Andrew T.;

Date: 2015

Source: Canadian Journal of Forest Research. 45: 422-435.

Publication Series: Scientific Journal (JRNL)

Description: Forest inventory and planning decisions are frequently informed by LiDAR data. Repeated LiDAR acquisitions offer an opportunity to update forest inventories and potentially improve forest inventory estimates through time. We leveraged repeated LiDAR and ground measures for a study area in northern Idaho, U.S.A., to predict (via imputation) - across both space and time-four forest inventory attributes: aboveground carbon (AGC), basal area (BA), stand density index (SDI), and total stem volume (Vol). Models were independently developed from 2003 and 2009 LiDAR datasets to spatially predict response variables at both times. Annual rates of change were calculated by comparing response variables between the two collections. Additionally, a pooled model was built by combining reference observations from both years to test if imputation can be performed across measurement dates. The R2 values for the pooled model were 0.87, 0.90, 0.89, and 0.87 for AGC, BA, SDI, and Vol, respectively. Mapping response variables at the landscape level demonstrates that the relationship between field data and LiDAR metrics holds true even though the data were collected in different years. Pooling data across time increases the number of reference observations available to resource managers and may ultimately improve inventory predictions.

Keywords: repeated LiDAR acquisitions, imputation, forest inventory, aboveground carbon, change detection

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Fekety, Patrick A.; Falkowski, Michael J.; Hudak, Andrew T. 2015. Temporal transferability of LiDAR-based imputation of forest structure attributes. Canadian Journal of Forest Research. 45: 422-435.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.