Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (0 bytes)

Title: Functional role of the herbaceous layer in eastern deciduous forest

Author: Elliott, Katherine J.; Vose, James M.; Knoepp, Jennifer D.; Clinton, Barton D.; Kloeppel, Brian D.;

Date: 2014

Source: Ecosystems

Publication Series: Scientific Journal (JRNL)

Description: The importance of the herbaceous layer in regulating ecosystem processes in deciduous forests is generally unknown. We use a manipulative study in a rich, mesophytic cove forest in the southern Appalachians to test the following hypotheses: (i) the herbaceous functional group (HFG) in mesophytic coves accelerates carbon and nutrient cycling, (ii) high litter quality input and rapid nutrient turnover associated with HFG will have a positive effect on overstory tree growth, and (iii) the HFG regulates tree regeneration with negative effects on seedling establishment due to competition for resources. We established treatment plots in a mesic, cove-hardwoods forest and removed the herbaceous flora (HR, removed twice per year) or added herbaceous organic material (OMA, once per year) for comparison to a no removal (NR) reference for a total of 14 years. The OMA treatment stimulated soil N-mineralization and increased litterfall mass and N content. OMA N-mineralization rates were more than two times greater than both the NR and HR treatments; however, we did not detect significant differences in soil CO2 efflux among treatments. Higher overstory litterfall mass and N in the OMA treatment plots indicated that overstory trees were benefiting from the enhanced soil N-mineralization. Higher overstory leaf mass and N suggests an important linkage between HR and aboveground net primary production even though this did not translate into greater tree basal area increment. We found an increase in regeneration of all tree species with HFG removal, and the response was particularly evident for Acer rubrum seedlings.

Keywords: functional group, mesophytic cove, tree growth, litterfall, forest floor, soil CO2 efflux, N-mineralization.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Elliott, Katherine J.; Vose, James M.; Knoepp, Jennifer D.; Clinton, Barton D.; Kloeppel, Brian D. 2014. Functional role of the herbaceous layer in eastern deciduous forest. Ecosystems, Springer. 16 p.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.