Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (0 bytes)

Title: Insights into the mechanism of copper-tolerance in Fibroporia radiculosa: The biosynthesis of oxalate

Author: Jenkins, Katie; Clausen, Carol A.; Green, Frederick; Diehl, Susan V.;

Date: 2015

Source: International Biodeterioration & Biodegradation

Publication Series: Scientific Journal (JRNL)

Description: Copper is currently used as the key component in wood preservatives despite the known tolerance of many brown-rot Basidiomycetes. Copper-tolerant fungi, like Fibroporia radiculosa, produce and accumulate high levels of oxalate when exposed to copper. To gain insight into the mechanism of oxalate production, four F. radiculosa isolates decaying untreated and 1.2% ammoniacal copper citrate-treated wood were evaluated for the differential expression of citrate synthase, isocitrate lyase, glyoxylate dehydrogenase, a succinate/fumarate antiporter, and a copper resistance-associated ATPase pump. Samples were analyzed at 2, 4, 6, and 8 weeks for oxalate production and gene expression. ATPase pump expression increased in the presence of copper when initial oxalate concentrations were low, suggesting it functions in helping the fungus adapt to the copper-rich environment by pumping toxic copper ions out of the cell. A connection in expression levels between citrate synthase, the succinate/fumarate antiporter isocitrate lyase, and glyoxylate dehydrogenase for the four isolates was found suggesting the production of oxalate originates in the mitochondrial TCA cycle via citrate synthase, shunts to the glyoxysomal glyoxylate cycle via the succinate/fumarate antiporter, moves through a portion of the glyoxylate cycle (isocitrate lyase), and ultimately is made in the cytoplasm (gyloxylate dehydrogenase).

Keywords: Copper-tolerance, Brown-rot decay, Oxalate, Fibroporia, Antrodia, Gene expression

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Ohno, Katie M.; Clausen, Carol A.; Green, Frederick III; Diehl, Susan V. 2015. Insights into the mechanism of copper-tolerance in Fibroporia radiculosa: The biosynthesis of oxalate. International Biodeterioration and Biodegradation. 105: 90-96.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.