Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (6.0 MB bytes)

Title: Data, data everywhere: detecting spatial patterns in fine-scale ecological information collected across a continent

Author: Potter, Kevin M.; Koch, Frank H.; Oswalt, Christopher M.; Iannone, Basil V.;

Date: 2016

Source: Landscape Ecology

Publication Series: Scientific Journal (JRNL)

Description: Context Fine-scale ecological data collected across broad regions are becoming increasingly available. Appropriate geographic analyses of these data can help identify locations of ecological concern. Objectives We present one such approach, spatial association of scalable hexagons (SASH), which
identifies locations where ecological phenomena occur at greater or lower frequencies than expected by chance. This approach is based on a sampling frame optimized for spatial neighborhood analysis, adjustable to the appropriate spatial resolution, and applicable to multiple data types. Methods We divided portions of the United States into scalable equal-area hexagonal cells and, using three types of data (field surveys, aerial surveys, satellite imagery), identified geographic clusters of forested areas having high and low values for (1) invasive plant diversity and cover, (2) mountain pine
beetle-induced tree mortality, and (3) wildland forest fire occurrences. Results Using the SASH approach, we detected statistically significant patterns of plant invasion, bark beetle-induced tree mortality, and fire occurrence density that will be useful for understanding macroscale patterns and processes associated with each forest health threat, for assessing its ecological and economic impacts, and for identifying areas where specific management activities may be needed. Conclusions The presented method is a ‘‘big data’’ analysis tool with potential application for macrosystems ecology studies that require rigorous testing of hypotheses within a spatial framework. This method is a standard component of annual national reports on forest health status and trends across the United States and can be applied easily to other regions and datasets.

Keywords: Big data  Ecological monitoring Hotspots  Invasive plants  Mountain pine beetle Wildfire

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Potter, Kevin M.; Koch, Frank H.; Oswalt, Christopher M.; Iannone, Basil V. 2016. Data, data everywhere: detecting spatial patterns in fine-scale ecological information collected across a continent. Landscape Ecology, Vol. 31(1): 18 pages.: 67-84.  10.1007/s10980-015-0295-0

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.