Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.0 MB bytes)

Title: Probing crystallinity of never-dried wood cellulose with Raman spectroscopy

Author: Agarwal, Umesh P.; Ralph, Sally A.; Reiner, Richard S.; Baez, Carlos;

Date: 2016

Source: Cellulose

Publication Series: Scientific Journal (JRNL)

Description: The structure of wood cell wall cellulose in its native state remains poorly understood, limiting the progress of research and development in numerous areas, including plant science, biofuels, and nanocellulose based materials. It is generally believed that cellulose in cell wall microfibrils has both crystalline and amorphous regions. However, there is evidence that appears to be contrary to this assumption. Here we show, using 1064-nm FT-Raman spectroscopy, that (1) compared to the crystalline state, cellulose in the never-dried native state is laterally aggregated but in a less-than crystalline state wherein internal chains are water-accessible, (2) hydroxymethyl groups (CH2OH) in cellulose exist not only in the tg conformation but also in the gt rotamer form, and (3) in native-state fibrils, low-frequency Raman bands due to cellulose crystal domains are absent, indicating the lack of crystallinity. Further evidence of the absence of crystallinity of the fibrils was the failure of the normal 64 % H2SO4 hydrolysis procedure to produce nanocellulose crystals from untreated wood. X-ray diffraction data obtained on wood, treated-wood, and wood-cellulose samples were consistent with the new finding and indicated that full-width-at-half-height of the X-ray diffractograms and lateral disorder in samples as measured by Raman were correlated (R2 = 0.95).

Keywords: Plant cell wall, Cellulose structure, Crystallinity, Microfibril, Nanocellulose, Raman spectroscopy, X-ray diffraction", "Plant cell wall, Cellulose structure, Crystallinity, Microfibril, Nanocellulose, Raman spectroscopy, X-ray diffraction

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Agarwal, Umesh P.; Ralph, Sally A.; Reiner, Richard S.; Baez, Carlos. 2016. Probing crystallinity of never-dried wood cellulose with Raman spectroscopy. Cellulose. 23: 125-144.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.