Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (0 bytes)

Title: Incorporating climate into belowground carbon estimates in the national greenhouse gas inventory

Author: Russell, Matthew B.; Domke, Grant M.; Woodall, Christopher W.; D’Amato, Anthony W.;

Date: 2015

Source: In: Stanton, Sharon M.; Christensen, Glenn A., comps. 2015. Pushing boundaries: new directions in inventory techniques and applications: Forest Inventory and Analysis (FIA) symposium 2015. 2015 December 8–10; Portland, Oregon. Gen. Tech. Rep. PNW-GTR-931. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: 120-123.

Publication Series: General Technical Report (GTR)

   Note: This article is part of a larger document. View the larger document

Description: Refined estimation of carbon (C) stocks within forest ecosystems is a critical component of efforts to reduce greenhouse gas emissions and mitigate the effects of projected climate change through forest C management. Recent evidence has pointed to the importance of climate as a driver of belowground C stocks. This study describes an approach for adjusting allometric models of belowground C with climate-derived predictions of belowground C stocks and quantifies the change in reported belowground C stocks applied to the US National Greenhouse Gas Inventory (NGHGI). Climate-adjusted predictions varied by region and forest type, but represented a 6.4% increase at the national scale when compared to current estimates. By combining allometric equations with trends in temperature, we conclude that climate variables can be used to adjust the US NGHGI estimates of belowground C stocks. Such strategies can also be used to determine the effects of future global change scenarios within a biomass and C accounting framework.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Russell, Matthew B.; Domke, Grant M.; Woodall, Christopher W.; D’Amato, Anthony W. 2015. Incorporating climate into belowground carbon estimates in the national greenhouse gas inventory. In: Stanton, Sharon M.; Christensen, Glenn A., comps. 2015. Pushing boundaries: new directions in inventory techniques and applications: Forest Inventory and Analysis (FIA) symposium 2015. 2015 December 8–10; Portland, Oregon. Gen. Tech. Rep. PNW-GTR-931. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: 120-123.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.