Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.0 MB byte)

Title: Comparisons of soil nitrogen mass balances for an ombrotrophic bog and a minerotrophic fen in northern Minnesota

Author: Hill, Brian H.; Jicha, Terri M.; Lehto, LaRae L.P.; Elonen, Colleen M.; Sebestyen, Stephen D.; Kolka, Randy;

Date: 2016

Source: Science of The Total Environment. 550: 880-892.

Publication Series: Scientific Journal (JRNL)

Description: Wecompared nitrogen (N) storage and flux in soils froman ombrotrophic bogwith that of a minerotrophic fen to quantify the differences in N cycling between these two peatlands types in northernMinnesota (USA). Precipitation, atmospheric deposition, and bog and fen outflowswere analyzed for nitrogen species. Upland and peatland soil sampleswere analyzed for N content, and for ambient (DN) and potential (DEA) denitrification rates. Annual atmospheric deposition was: 0.88-3.07 kg NH4+ ha-1 y-1; 1.37-1.42 kg NO3- ha-1 y-1; 2.79-4.69 kg TN ha-1 y-1. Annual N outflows were: bog—0.01-0.04 kg NH4+ ha-1 y-1, NO3- 0.01-0.06 kg ha-1 y-1, and TN 0.11-0.69 kg ha-1 y-1; fen—NH4+ 0.01-0.16 kg ha-1 y-1, NO3- 0.29-0.48 kg ha-1 y-1, and TN 1.14-1.61 kg ha-1 y-1. Soil N content depended on location within the bog or fen, and on soil depth. DN and DEA rates were low throughout the uplands and peatlands, and were correlated with atmospheric N deposition, soil N storage, and N outflow. DEA was significantly greater than DN indicating C or N limitation of the denitrification process. We highlight differences between the bog and fen, between the upland mineral soils and peat, and the importance of biogeochemical hotspots within the peatlands. We point out the importance of organic N storage, as a source of N for denitrification, and propose a plausible link between organic N storage, denitrification andNexport frompeatlands. Finally,we considered the interactions of microbial metabolismwith nutrient availability and stoichiometry, and how N dynamics might be affected by climate change in peatland ecosystems.

Keywords: Bog, Denitrification, Fen, Peat, Soils, Watershed N budget

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Hill, Brian H.; Jicha, Terri M.; Lehto, LaRae L.P.; Elonen, Colleen M.; Sebestyen, Stephen D.; Kolka, Randall K. 2016. Comparisons of soil nitrogen mass balances for an ombrotrophic bog and a minerotrophic fen in northern Minnesota. Science of The Total Environment. 550: 880-892.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.