Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (5.0 MB bytes)

Title: Approximating prediction uncertainty for random forest regression models

Author: Coulston, John W.; Blinn, Christine E.; Thomas, Valerie A.; Wynne, Randolph H.;

Date: 2016

Source: Photogrammetric Engineering & Remote Sensing

Publication Series: Scientific Journal (JRNL)

Description: Machine learning approaches such as random forest have increased for the spatial modeling and mapping of continuous variables. Random forest is a non-parametric ensemble approach, and unlike traditional regression approaches there is no direct quantification of prediction error. Understanding prediction uncertainty is important when using model-based continuous maps as inputs to other modeling applications such as fire modeling. Here we use a Monte Carlo approach to quantify prediction uncertainty for random forest regression models. We test the approach by simulating maps of dependent and independent variables with known characteristics and comparing actual errors with prediction errors. Our approach produced conservative prediction intervals across most of the range of predicted values. However, because the Monte Carlo approach was data driven, prediction intervals were either too wide or too narrow in sparse parts of the prediction distribution. Overall, our approach provides reasonable estimates of prediction uncertainty for random forest regression models.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Coulston, John W.; Blinn, Christine E.; Thomas, Valerie A.; Wynne, Randolph H. 2016. Approximating prediction uncertainty for random forest regression models. Photogrammetric Engineering & Remote Sensing, Vol. 82(3): 189-197. 9 p.  10.14358/PERS.82.3.189

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.