Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.0 MB byte)

Title: The urban forest and ecosystem services: impact on urban water, heat, and pollution cycles at the tree, street, and city scale

Author: Livesley, S. J.; McPherson, E. G.; Calfapietra, C.;

Date: 2016

Source: Journal of Environmental Quality. 45: 119-124

Publication Series: Scientific Journal (JRNL)

Description: Many environmental challenges are exacerbated within the urban landscape, such as stormwater runoff and flood risk, chemical and particulate pollution of urban air, soil and water, the urban heat island, and summer heat waves. Urban trees, and the urban forest as a whole, can be managed to have an impact on the urban water, heat, carbon and pollution cycles. However, there is an increasing need for empirical evidence as to the magnitude of the impacts, both beneficial and adverse, that urban trees can provide and the role that climatic region and built landscape circumstance play in modifying those impacts. This special section presents new research that advances our knowledge of the ecological and environmental services provided by the urban forest. The 14 studies included provide a global perspective on the role of trees in towns and cities from five continents. Some studies provide evidence for the cooling benefit of the local microclimate in urban green space with and without trees. Other studies focus solely on the cooling benefit of urban tree transpiration at a mesoscale or on cooling from canopy shade at a street and pedestrian scale. Other studies are concerned with tree species differences in canopy interception of rainfall, water uptake from biofilter systems, and water quality improvements through nutrient uptake from stormwater runoff. Research reported here also considers both the positive and the negative impacts of trees on air quality, through the role of trees in removing air pollutants such as ozone as well as in releasing potentially harmful volatile organic compounds and allergenic particulates. A transdisciplinary framework to support future urban forest research is proposed to better understand and communicate the role of urban trees in urban biogeochemical cycles that are highly disturbed, highly managed, and of paramount importance to human health and well-being.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Livesley, S. J.; McPherson, E. G.; Calfapietra, C. 2016. The urban forest and ecosystem services: impact on urban water, heat, and pollution cycles at the tree, street, and city scale. Journal of Environmental Quality. 45: 119-124.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.