Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.0 MB bytes)

Title: Contribution of large-scale circulation anomalies to changes in extreme precipitation frequency in the United States

Author: Yu, Lejiang; Zhong, Shiyuan; Pei, Lisi; Bian, Xindi (Randy); Heilman, Warren E.;

Date: 2016

Source: Environmental Research Letters. 11(4): 044003.

Publication Series: Scientific Journal (JRNL)

Description: The mean global climate has warmed as a result of the increasing emission of greenhouse gases induced by human activities. This warming is considered the main reason for the increasing number of extreme precipitation events in the US. While much attention has been given to extreme precipitation events occurring over several days, which are usually responsible for severe flooding over a large region, little is known about how extreme precipitation events that cause flash flooding and occur at sub-daily time scales have changed over time. Here we use the observed hourly precipitation from the North American Land Data Assimilation System Phase 2 forcing datasets to determine trends in the frequency of extreme precipitation events of short (1 h, 3 h, 6 h, 12 h and 24 h) duration for the period 1979-2013. The results indicate an increasing trend in the central and eastern US. Over most of the western US, especially the Southwest and the Intermountain West, the trends are generally negative. These trends can be largely explained by the interdecadal variability of the Pacific Decadal Oscillation and Atlantic Multidecadal Oscillation (AMO), with theAMOmaking a greater contribution to the trends in both warm and cold seasons.

Keywords: extreme precipitation, the Pacific Decadal Oscillation (PDO), the Atlantic Multidecadal Oscillation (AMO), interdecadal variability

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.



Yu, Lejiang; Zhong, Shiyuan; Pei, Lisi; Bian, Xindi; Heilman, Warren E. 2016. Contribution of large-scale circulation anomalies to changes in extreme precipitation frequency in the United States. Environmental Research Letters. 11(4): 044003.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.