Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (4.0 MB bytes)

Title: A principal component approach for predicting the stem volume in Eucalyptus plantations in Brazil using airborne LiDAR data

Author: Silva, Carlos Alberto; Klauberg, Carine; Hudak, Andrew T.; Vierling, Lee A.; Liesenberg, Veraldo; Carvalho, Samuel P. C. e; Rodriguez, Luiz C. E.;

Date: 2016

Source: Forestry. 89: 422-433.

Publication Series: Scientific Journal (JRNL)

Description:

Improving management practices in industrial forest plantations may increase production efficiencies, thereby reducing pressures on native tropical forests for meeting global pulp needs. This study aims to predict stem volume (V) in plantations of fast-growing Eucalyptus hybrid clones located in southeast Brazil using field plot and airborne Light Detection andRanging (LiDAR) data. Forest inventory attributes and LiDAR-derived metrics were calculated at 108 sample plots. The best LiDAR-based predictors of V were identified based on loadings calculated from a principal component analysis (PCA). After selecting these best predictors using PCA,we developed multiple regression models predicting V from selected LiDAR metrics. Metrics related to tree height and canopy depth were most effective for V prediction, with an overall model coefficient of determination (adj. R2) of 0.87, and a root mean squared error (RMSE) of 27.60 m3 ha-1 (i.e. relative RMSE = 9.99 per cent).We used this model to map stem V of Eucalyptus hybrid clones across the full LiDAR data extent. The accuracy and precision of our results show that LiDAR-derived V is appropriate for updating Eucalyptus forest base maps and registries in the paper and pulp supply chain. However, further studies are necessary to evaluate and compare the cost of acquisition and processing of LiDAR data against conventional V inventory in this system.

Keywords: supply chain, LiDAR metrics, remote sensing, Eucalyptus spp., forest management, multivariate statistics

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Silva, Carlos Alberto; Klauberg, Carine; Hudak, Andrew T.; Vierling, Lee A.; Liesenberg, Veraldo; Carvalho, Samuel P. C. e; Rodriguez, Luiz C. E. 2016. A principal component approach for predicting the stem volume in Eucalyptus plantations in Brazil using airborne LiDAR data. Forestry. 89: 422-433.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.