Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (505.0 KB bytes)

Title: Trenching reduces soil heterotrophic activity in a loblolly pine (Pinus taeda) forest exposed to elevated atmospheric [CO2] and N fertilization

Author: Drake, J.E.; Oishi, A.C.; Giasson, M. A.; Oren, R.; Johnsen, Kurt; Finzi, A.C.;

Date: 2012

Source: Agriculture and Forest Meteorology

Publication Series: Scientific Journal (JRNL)

Description: Forests return large quantities of C to the atmosphere through soil respiration (Rsoil), which is often conceptually separated into autotrophic C respired by living roots (Rroot) and heterotrophic decomposition (Rhet) of soil organic matter (SOM). Live roots provide C sources for microbial metabolism via exudation, allocation to fungal associates, sloughed-off cells, and secretions such as mucilage production, suggesting a coupling between the activity of roots and heterotrophs. We addressed the strength of root effects on the activity of microbes and exo-enzymes by removing live-root-C inputs to areas of soil with a trenching experiment. We examined the extent to which trenching affected metrics of soil heterotrophic activity (proteolytic enzyme activity, microbial respiration, potential net N mineralization and nitrification, and exo-enzyme activities) in a forest exposed to elevated atmospheric [CO2] and N fertilization, and used automated measurements of Rsoil in trenched and un-trenched plots to estimate Rroot and Rhet components. Trenching decreased many metrics of heterotrophic activity and increased net N mineralization and nitrification, suggesting that the removal of root-C inputs reduced Rhet by exacerbating microbial C limitation and stimulating waste-N excretion. This trenching effect was muted by N fertilization alone but not when N fertilization was combined with elevated CO2, consistent with known patterns of belowground C allocation at this site. Live-root-C inputs to soils and heterotrophic activity are tightly coupled, so root severing techniques like trenching are not likely to achieve robust quantitative estimates of Rroot or Rhet.

Keywords: Elevated carbon dioxide, Nitrogen fertilization, Trenching, Priming, Root respiration, Heterotrophic respiration

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



Drake, J.E.; Oishi, A.C.;Giasson, M. A.;Oren, R.; Johnsen, K.H.; Finzi, A.C. 2012.Trenching reduces soil heterotrophic activity in a loblolly pine (Pinus taeda) forest exposed to elevated atmospheric [CO2] and N fertilization. Agricultural Forest Meteorology 165: 43-52. 10 p.  10.1016/j.agrformet.2012.05.017


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.