Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (262.0 KB bytes)

Title: Total below-ground carbon and nitrogen partitioning of mature black spruce displaying genetic x soil moisture interaction in growth

Author: Major, John E.; Johnsen, Kurt H.; Barsi, Debby C.; Campbell, Moira;

Date: 2012

Source: Canadian Journal of Forest Research

Publication Series: Scientific Journal (JRNL)

Description: Total belowground biomass, soil C, and N mass were measured in plots of 32-year-old black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.) from four full-sib families studied previously for drought tolerance and differential productivity on a dry and a wet site. Stump root biomass was greater on the wet than on the dry site; however, combined fine and coarse root biomass was greater on the dry than on the wet site, resulting in no site root biomass differences. There were no site differences in root distribution by soil depth. Drought-tolerant families had greater stump root biomass and allocated relatively less to combined coarse and fine roots than drought-intolerant families. Fine roots (2 mm) made up 10.9% and 50.2% of the belowground C and N biomass. Through 50 cm soil depth, mean total belowground C mass was 187.2 Mg·ha–1, of which 8.9%, 3.4%, 0.7%, and 87.0% were from the stump root, combined fine and coarse roots, necromass, and soil, respectively. Here, we show that belowground C sequestration generally mirrors (mostly from stump roots) aboveground growth, and thus, trends in genetic and genetic  environment productivity effects result in similar effects on belowground C sequestration. Thus, tree improvement may well be an important avenue to help stem increases in atmospheric CO2.

Keywords: roots, carbon, black spruce, genetics

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Major, John E.; Johnsen, Kurt H.; Barsi, Debby C.; Campbell, Moira 2012. Total below-ground carbon and nitrogen partitioning of mature black spruce displaying genetic x soil moisture interaction in growth. Canadian Journal of Forest Research 42:1939-1952. 14 p. doi:10.1139/x2012-145

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.