Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (474.0 KB bytes)

Title: Belowground Response to Drought in a Tropical Forest Soil. I. Changes in Microbial Functional Potential and Metabolism

Author: Bouskill, Nicholas J.; Wood, Tana E.; Baran, Richard; Ye, Zaw; Bowen, Benjamin P.; Lim, HsiaoChien; Zhou, Jizhong; Nostrand, Joy D. Van; Nico, Peter; Northen, Trent R.; Silver, Whendee L.; Brodie, Eoin L.;

Date: 2016

Source: Frontiers in Microbiology

Publication Series: Scientific Journal (JRNL)

Description:

Global climate models predict a future of increased severity of drought in many tropical forests. Soil microbes are central to the balance of these systems as sources or sinks of atmospheric carbon (C), yet how they respond metabolically to drought is not well-understood. We simulated drought in the typically aseasonal Luquillo Experimental Forest, Puerto Rico, by intercepting precipitation falling through the forest canopy. This approach reduced soil moisture by 13% and water potential by 0.14 MPa (from -0.2 to -0.34). Previous results from this experiment have demonstrated that the diversity and composition of these soil microbial communities are sensitive to even small changes in soil water. Here, we show prolonged drought significantly alters the functional potential of the community and provokes a clear osmotic stress response, including the production of compatible solutes that increase intracellular C demand. Subsequently, a microbial population emerges with a greater capacity for extracellular enzyme production targeting macromolecular carbon. Significantly, some of these drought-induced functional shifts in the soil microbiota are attenuated by prior exposure to a short-term drought suggesting that acclimation may occur despite a lack of longer-term drought history.

Keywords: tropical forests, drought, microbial ecology, osmolytes, functional gene microarray, Luquillo Experimental Forest, carbon, throughfall exclusion, soil moisture

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Bouskill, Nicholas J.; Wood, Tana E.; Baran, Richard; Ye, Zaw; Bowen, Benjamin P.; Lim, HsiaoChien; Zhou, Jizhong; Nostrand, Joy D. Van; Nico, Peter; Northen, Trent R.; Silver, Whendee L.; Brodie, Eoin L. 2016. Belowground Response to Drought in a Tropical Forest Soil. I. Changes in Microbial Functional Potential and Metabolism. Frontiers in Microbiology, Vol. 7(333): 525-.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.