Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (372.0 KB bytes)

Title: Using multi-spectral landsat imagery to examine forest health trends at Fort Benning, Georgia

Author: Reid, Shawna L.; Walker, Joan L.; Schaaf, Abigail;

Date: 2016

Source: In:Proceedings of the 18th biennial southern silvicultural research conference. e-Gen. Tech. Rep. SRS-212. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. 614 p.

Publication Series: Proceedings - Paper (PR-P)

   Note: This article is part of a larger document. View the larger document

Description: Assessing vegetation health attributes like canopy density or live crown ratio and ecological processes such as growth or succession ultimately requires direct measures of plant communities. However, on-theground sampling is labor and time intensive, effectively limiting the amount of forest that can be evaluated. Radiometric data collected with a variety of sensors from satellite platforms provide a partial solution to this challenge. Because plant function via photosynthesis is directly tied to electromagnetic energy, vegetation function has been successfully related to radiometric data (Lawley and others In press). Various indices have been developed to interpret vegetative functions or conditions including basal area, species composition, moisture stress, and damage from insects or disease (Liew and others 2008; Bannari and others 1995). The normalized difference vegetation index (NDVI), based on reflectance in the red (R) and near infrared (NIR) bands of the electromagnetic spectrum (NDVI = (NIR - R) / (NIR + R); range:-1 to 1), has been shown to be highly correlated with photosynthetic capacity, net primary productivity, leaf area index, and evapotranspiration. Further, time-series of NDVI have proven useful for evaluating such functions as canopy growth rates, and phenological events like the onset of spring (Pettorelli 2013).

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Reid, Shawna L.; Walker, Joan L.; Schaaf, Abigail 2016. Using multi-spectral landsat imagery to examine forest health trends at Fort Benning, Georgia. In:Proceedings of the 18th biennial southern silvicultural research conference. e-Gen. Tech. Rep. SRS-212. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. 3 p.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.