Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (6.0 MB bytes)

Title: Coastal plain soils and geomorphology: a key to understanding forest hydrology

Author: Williams, Thomas M.; Amatya, Devendra M.;

Date: 2016

Source: In: Stringer, Christina E.; Krauss, Ken W.; Latimer, James S., eds. 2016. Headwaters to estuaries: advances in watershed science and management -Proceedings of the Fifth Interagency Conference on Research in the Watersheds. March 2-5, 2015, North Charleston, South Carolina. e-General Technical Report SRS-211. Asheville, NC: U.S. Department of Agriculture Forest Service, Southern Research Station. 302 p.

Publication Series: Proceedings - Paper (PR-P)

   Note: This article is part of a larger document. View the larger document

Description:

In the 1950s, Coile published a simple classification of southeastern coastal soils using three characteristics: drainage class, sub-soil depth, and sub-soil texture. These ideas were used by Warren Stuck and Bill Smith to produce a matrix of soils with drainage class as one ordinate and subsoil texture as the second for the South Carolina coastal plain. Soils with sandy clay loam sub-soils (the most widely distributed soils on the coastal plain) were further divided by sub-soil depth into three categories: > 40 inches, 20-40 inches, and <20 inches. In 1974 Donald Colquhoun classified geomorphology of the lower SC coastal plain by relationship to seven former marine terraces. Sediments were associated with beach, offshore, or back barrier deposits while river valleys were associated with either fluvial or estuarine deposits. Using GIS, soils in the matrix can be mapped to the geomorphic features revealing a geomorphic explanation for the distribution of soils across the coastal plain. Beach and offshore deposits have sand throughout the soil profile, while back barrier deposits tend to have clay or clay loams. Fluvial terrace deposits have sandy clay loam sub-soils while some estuarine valleys have entirely organic soil profiles. Classification of drainage class is directly related to the average water table depth of soils. Within a single sub-soil type (sands), average water table depth is directly predicted by drainage class. Soil subsurface type also greatly influences drainable porosity (the porosity that is filled or emptied by a small change in water table). Geochemical analysis of flows on sandy subsoil (near Georgetown) and clay sub-soils on Turkey Creek and Watershed 80 (near Charleston) show this difference in drainable porosity and water table fluctuations to be related to the source of storm runoff. Sandy sub-soils have higher drainable porosity, smaller water table fluctuations, and a prevalence of soil water chemistry in runoff. Clay sub-soils have lower drainable porosity, greater water table fluctuation as a response to rainfall and ET, and stream runoff chemistry more similar to that of rainwater.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Williams, Thomas M.; Amatya, Devendra M. 2016. Coastal plain soils and geomorphology: a key to understanding forest hydrology. In: Stringer, Christina E.; Krauss, Ken W.; Latimer, James S., eds. 2016. Headwaters to estuaries: advances in watershed science and management -Proceedings of the Fifth Interagency Conference on Research in the Watersheds. March 2-5, 2015, North Charleston, South Carolina. e-General Technical  Report  SRS-211. Asheville, NC: U.S. Department of Agriculture Forest Service, Southern Research Station. 8 p.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.