Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.0 MB bytes)

Title: Anisotropy and temperature dependence of structural, thermodynamic, and elastic properties of crystalline cellulose Iβ: a first-principles investigation

Author: Shang, ShunLi; Hector Jr., Louis G.; Saxe, Paul; Liu, Zi-Kui; Moon, Robert J.; Zavattieri, Pablo D.;

Date: 2014

Source: Modelling Simul. Mater. Sci. Eng. Volume 22, 2014; 28 p.

Publication Series: Scientific Journal (JRNL)

Description: Anisotropy and temperature dependence of structural, thermodynamic and elastic properties of crystalline cellulose Iβ were computed with first-principles density functional theory (DFT) and a semi-empirical correction for van der Waals interactions. Specifically, we report the computed temperature variation (up to 500 K) of the monoclinic cellulose Iβ lattice parameters, constant pressure heat capacity, Cp, entropy, S, enthalpy, H, the linear thermal expansion components, ξI , and components of the isentropic and isothermal (single crystal) elastic stiffness matrices, CS ij (T ) and CT ij (T ), respectively. Thermodynamic quantities from phonon calculations computed with DFT and the supercell method provided necessary inputs to compute the temperature dependence of cellulose Iβ properties via the quasi-harmonic approach. The notable exceptions were the thermal conductivity components, λi (the prediction of which has proven to be problematic for insulators using DFT) for which the reverse, non-equilibrium molecular dynamics approach with a force field was applied. The extent to which anisotropy of Young’s modulus and Poisson’s ratio is temperature-dependent was explored in terms of the variations of each with respect to crystallographic directions and preferred planes containing specific bonding characteristics (as revealed quantitatively from phonon force constants for each atomic pair, and qualitatively from charge density difference contours). Comparisons of the predicted quantities with available experimental data revealed reasonable agreement up to 500 K. Computed properties were interpreted in terms of the cellulose Iβ structure and bonding interactions.

Keywords: crystalline cellulose, first-principles density functional theory, thermodynamic properties, mechanical properties

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Dri,; Fernando L.; Shang, ShunLi; Hector Jr., Louis G.; Saxe, Paul; Liu, Zi-Kui; Moon, Robert J.; Zavattieri, Pablo D. 2014. Anisotropy and temperature dependence of structural, thermodynamic, and elastic properties of crystalline cellulose Iβ: a first-principles investigation. Modelling Simul. Mater. Sci. Eng. Volume 22, 2014; 28 p.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.