Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (687.0 KB bytes)

Title: Estimating GHG Emissions from the Manufacturing of Field-Applied Biochar Pellets

Author: Bergman, Richard D.; Zhang, Hanwen; Englund, Karl; Windell, Keith; Gu, Hongmei;

Date: 2016

Source: Proceedings of the 59th International Convention of Society of Wood Science and Technology

Publication Series: Full Proceedings

Description: Biochar application to forest soils can provide direct and indirect benefits, including carbon sequestration. Biochar, the result of thermochemical conversion of biomass, can have positive environmental climate benefits and can be more stable when field-applied to forest soils than wood itself. Categorizing greenhouse gas (GHG) emissions and carbon sequestration profile are critical to the long-term sustainability of this practice. Using life-cycle assessment as a sustainable metric tool, this study evaluated the fuel consumed to pelletize, transport, and field-apply biochar produced from a novel thermochemical process from gate-to-gate on a per functional basis of one oven dry (OD) tonne. In the present study, pellet transport and field application were considered part of the manufacturing process. The fossil GHG emissions released from gate-to-gate manufacturing, 76.6 kg CO2eq/OD t, was far exceeded by the amount of biogenic carbon sequestered long term at 2,430 kg CO2eq/OD t, even considering the decay of biochar carbon over 100 years into biogenic CO2. Biogenic CO2 as part of the global carbon cycle does not contribute to climate change when the feedstock came from sustainably managed forests, as in this study. Quantifying global warming impact showed that consuming primary energy for field-applied biochar pellets had relatively small contributions to climate change relative to the carbon sequestration potential of the biochar pellets.

Keywords: Life-cycle assessment, climate change, forest, biochar, spreading, sequestration, sequestrations

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Bergman, Richard D.; Zhang, Hanwen; Englund, Karl; Windell, Keith; Gu, Hongmei. 2016. Estimating GHG emissions from the manufacturing of field-applied biochar pellets. In: Proceedings of the 59th International Convention of Society of Wood Science and Technology. 6-10 March 2016; Curitiba, Brazil. p. 139-149.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.