Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (4.5 MB bytes)

Title: Integrating ecosystem sampling, gradient modeling, remote sensing, and ecosystem simulation to create spatially explicit landscape inventories

Author: Keane, Robert E.; Rollins, Matthew G.; McNicoll, Cecilia H.; Parsons, Russell A.;

Date: 2002

Source: RMRS-GTR-92. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 61 p.

Publication Series: General Technical Report (GTR)

Description: Presented is a prototype of the Landscape Ecosystem Inventory System (LEIS), a system for creating maps of important landscape characteristics for natural resource planning. This system uses gradient-based field inventories coupled with gradient modeling remote sensing, ecosystem simulation, and statistical analyses to derive spatial data layers required for ecosystem management. Field data were collected in two large (more than 10,000 km2) study areas along important environmental gradients using modified ECODATA methods. A multilevel database was used to derive response variables for predictive landscape mapping from the ECODATA database. Linkage of gradient models with remote sensing allows a standardized, flexible, detailed, and comprehensive classification of landscape characteristics. Over 40 spatially explicit variables were derived for each study area using existing spatial data, satellite imagery, and ecosystem simulation. This spatial database (the LEIS GIS) described landscape-scale indirect, direct, and resource gradients and provided predictor variables for multivariate predictive landscape models. Statistical programs and GIS were used to spatially model several landscape characteristics as a proof of concept for the LEIS. These proof-of-concept products were: (1) basal area, (2) western redcedar habitat, and (3) fuel models. Output maps were between 65 percent and 90 percent accurate when compared to reference data from each study area. Main strengths of the LEIS approach include: (1) a standardized, repeatable approach to sampling and database development for landscape assessment, (2) combining remote sensing, ecosystem simulation, and gradient modeling to create predictive landscape models, (3) flexibility in terms of potential maps generated from LEIS, and (4) the use of direct, resource, and functional gradient analysis for mapping landscape characteristics.

Keywords: gradient modeling, remote sensing, geographic information systems, ecosystem simulation, predictive landscape mapping, ecosystem management

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Keane, Robert E.; Rollins, Matthew G.; McNicoll, Cecilia H.; Parsons, Russell A. 2002. Integrating ecosystem sampling, gradient modeling, remote sensing, and ecosystem simulation to create spatially explicit landscape inventories. RMRS-GTR-92. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 61 p.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.