Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (675.0 KB bytes)

Title: Structural and functional connectivity as a driver of hillslope erosion following disturbance

Author: Williams, C. Jason; Pierson, Frederick B.; Robichaud, Pete; Al-Hamdan, Osama Z.; Boll, Jan; Strand, Eva K.;

Date: 2016

Source: International Journal of Wildland Fire. 25(3): 306-321.

Publication Series: Scientific Journal (JRNL)

Description:

Hydrologic response to rainfall on fragmented or burnt hillslopes is strongly influenced by the ensuing connectivity of runoff and erosion processes. Yet cross-scale process connectivity is seldom evaluated in field studies owing to scale limitations in experimental design. This study quantified surface susceptibility and hydrologic response across point to hillslope scales at two degraded unburnt and burnt woodland sites using rainfall simulation and hydrologic modelling. High runoff (31-47 mm) and erosion (154-1893 g m -2) measured at the patch scale (13 m2) were associated with accumulation of fine-scale (0.5-m2) splash-sheet runoff and sediment and concentrated flow formation through contiguous bare zones (64-85% bare ground). Burning increased the continuity of runoff and sediment availability and yield. Cumulative runoff was consistent across plot scales whereas erosion increased with increasing plot area due to enhanced sediment detachment and transport. Modelled hillslope-scale runoff and erosion reflected measured patch-scale trends and the connectivity of processes and sediment availability. The cross-scale experiments and model predictions indicate the magnitude of hillslope response is governed by rainfall input and connectivity of surface susceptibility, sediment availability, and runoff and erosion processes. The results demonstrate the importance in considering cross-scale structural and functional connectivity when forecasting hydrologic and erosion responses to disturbances.

Keywords: ecohydrology, fire effects, infiltration, risk assessment, runoff, soil erosion, vegetation transition, wildfire, woodland encroachment

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Williams, C. Jason; Pierson, Frederick B.; Robichaud, Peter R.; Al-Hamdan, Osama Z.; Boll, Jan; Strand, Eva K. 2016. Structural and functional connectivity as a driver of hillslope erosion following disturbance. International Journal of Wildland Fire. 25(3): 306-321.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.