Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (5.0 MB bytes)

Title: Quantifying allometric model uncertainty for plot-level live tree biomass stocks with a data-driven, hierarchical framework

Author: Clough, Brian J.; Russell, Matthew B.; Domke, Grant M.; Woodall, Christopher W.;

Date: 2016

Source: Forest Ecology and Management. 372: 175-188.

Publication Series: Scientific Journal (JRNL)

Description: Accurate uncertainty assessments of plot-level live tree biomass stocks are an important precursor to estimating uncertainty in annual national greenhouse gas inventories (NGHGIs) developed from forest inventory data. However, current approaches employed within the United States’ NGHGI do not specifically incorporate methods to address error in tree-scale biomass models and as a result may misestimate overall uncertainty surrounding plot-scale assessments. We present a data-driven, hierarchical modeling approach to predict both total aboveground and foliage biomass for inventory plots within the US Forest Service Forest Inventory and Analysis (FIA) program, informed by a large multispecies felled-tree dataset. Our results reveal substantial plot-scale relative uncertainties for total aboveground biomass (11-155% of predicted means) with even larger uncertainties for foliage biomass (27-472%). In addition, we found different distributions of total aboveground and foliage biomass when compared with other generalized biomass models for North America. These results suggest a greater contribution of allometric models to the overall uncertainty of biomass stock estimates than what has been previously reported by the literature. While the relative performance of the hierarchical model is influenced by biases within the fitting data, particularly for woodland and conifer species, our results suggest that poor representation of individual tree model error may lead to unrealistically high confidence in plot-scale estimates of biomass stocks derived from forest inventory data. However, improvements to model design and the quality of felled-tree data for fitting and validation may offer substantial improvements in the accuracy and precision of NGHGIs.

Keywords: Forest biomass, National greenhouse gas inventory, Data assimilation, Bayesian hierarchical models

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Clough, Brian J.; Russell, Matthew B.; Domke, Grant M.; Woodall, Christopher W. 2016. Quantifying allometric model uncertainty for plot-level live tree biomass stocks with a data-driven, hierarchical framework. Forest Ecology and Management. 372: 175-188.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.