Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (528.0 KB bytes)


Joint  effects of habitat configuration and temporal stochasticity on population dynamics

Author: Fraterrigo, Jennifer M.; Pearson, Scott M.; Turner, Monica G.;

Date: 2009

Source: Landscape Ecology

Publication Series: Scientific Journal (JRNL)


Habitat configuration and temporal stochasticity in the environment are recognized as important drivers of population structure, yet few studies have examined the combined influence of these factors. We developed a spatially explicit simulation model to investigate how stochasticity in survival and reproduction influenced population dynamics on landscapes that differed in habitat configuration. Landscapes ranged from completely contiguous to highly fragmented, and simulated populations varied in mean survival probability (0.2, 0.4, 0.8) and dispersal capacity (1, 3, or 5 cells). Overall, habitat configuration had a large effect on populations, accounting for >80% of the variation in population size when mean survival and dispersal capacity were held constant. Stochasticity in survival and reproduction were much less influential, accounting for <1–14% of the variation in population size, but exacerbated the negative effects of habitat fragmentation by increasing the number of local extinctions in isolated patches. Stochasticity interacted strongly with both mean survival probability and habitat configuration. For example, survival stochasticity reduced population size when survival probability was high and habitat was fragmented, but had little effect on population size under other conditions. Reproductive stochasticity reduced population size irrespective of mean survival and habitat configuration, but had the largest effect when survival probability was intermediate and habitat was well connected. Stochasticity also enhanced the variability of population size in most cases. Contrary to expectations, increasing dispersal capacity did not increase population persistence, because the probability of finding suitable habitat within the dispersal neighborhood declined more for the same level of dispersal capacity when fragmentation was high compared to when it was low. These findings suggest that greater environmental variability, as might arise due to climate change, is likely to compound population losses due to habitat fragmentation and may directly reduce population size if reproductive output is compromised. It may also increase variability in population size.

Keywords: Climate change Colonization Demography Fragmentation Life History Metapopulations Plants Reproductive output Spatially explicit model Survival

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



Fraterrigo, Jennifer M.; Pearson, Scott M.; Turner, Monica G. 2008. Joint effects of habitat configuration and temporal stochasticity on population dynamics. Landscape Ecology. 24(7): 863-877. doi: 10.1007/s10980-009-9364-6.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.